Image Restoration by Denoising Diffusion Models with Iteratively Preconditioned Guidance

去模糊 计算机科学 图像复原 降噪 噪音(视频) 人工智能 投影(关系代数) 采样(信号处理) 算法 图像(数学) 图像处理 计算机视觉 滤波器(信号处理)
作者
Tomer Garber,Tom Tirer
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.16519
摘要

Training deep neural networks has become a common approach for addressing image restoration problems. An alternative for training a "task-specific" network for each observation model is to use pretrained deep denoisers for imposing only the signal's prior within iterative algorithms, without additional training. Recently, a sampling-based variant of this approach has become popular with the rise of diffusion/score-based generative models. Using denoisers for general purpose restoration requires guiding the iterations to ensure agreement of the signal with the observations. In low-noise settings, guidance that is based on back-projection (BP) has been shown to be a promising strategy (used recently also under the names "pseudoinverse" or "range/null-space" guidance). However, the presence of noise in the observations hinders the gains from this approach. In this paper, we propose a novel guidance technique, based on preconditioning that allows traversing from BP-based guidance to least squares based guidance along the restoration scheme. The proposed approach is robust to noise while still having much simpler implementation than alternative methods (e.g., it does not require SVD or a large number of iterations). We use it within both an optimization scheme and a sampling-based scheme, and demonstrate its advantages over existing methods for image deblurring and super-resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊小美完成签到,获得积分10
刚刚
1秒前
聪明晓蓝发布了新的文献求助30
2秒前
zz应助AoAoo采纳,获得10
2秒前
3秒前
深情安青应助猪美丽采纳,获得10
3秒前
4秒前
yuyu发布了新的文献求助10
4秒前
5秒前
wjx发布了新的文献求助10
6秒前
科研通AI5应助Q123ba叭采纳,获得10
6秒前
7秒前
Xiang完成签到,获得积分10
7秒前
7秒前
lu完成签到,获得积分10
8秒前
知源完成签到 ,获得积分10
8秒前
8秒前
平淡山柏应助cricket采纳,获得10
9秒前
聪明晓蓝完成签到,获得积分20
9秒前
9秒前
10秒前
阳光溪流发布了新的文献求助10
11秒前
善学以致用应助涛1采纳,获得10
12秒前
狗蛋完成签到,获得积分10
12秒前
小钱钱发布了新的文献求助10
12秒前
13秒前
14秒前
靳志强发布了新的文献求助30
15秒前
kmkz发布了新的文献求助10
16秒前
17秒前
负责冰凡完成签到,获得积分20
18秒前
隐形曼青应助失眠的海云采纳,获得10
18秒前
18秒前
丘比特应助mingjie采纳,获得10
19秒前
李健的小迷弟应助张倩采纳,获得10
19秒前
Q123ba叭发布了新的文献求助10
19秒前
wwww完成签到 ,获得积分10
20秒前
Lemenchichi完成签到,获得积分10
21秒前
研友_LwlRen发布了新的文献求助10
22秒前
wanci应助研友_V8RmmZ采纳,获得10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789328
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269432
捐赠科研通 3050794
什么是DOI,文献DOI怎么找? 1674162
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693