清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction and Validation of Metabolic Dysfunction-Associated Fatty Liver Disease Using Fatty Liver-Related Indices in a Japanese Population

脂肪肝 医学 逻辑回归 优势比 内科学 人口 疾病 体质指数 代谢综合征 接收机工作特性 肥胖 环境卫生
作者
Kengo Moriyama
出处
期刊:Metabolic Syndrome and Related Disorders [Mary Ann Liebert]
卷期号:22 (3): 190-198 被引量:1
标识
DOI:10.1089/met.2023.0212
摘要

Background: Recently, metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed. It is uncertain how indices that predict fatty liver are associated with MAFLD in Japanese. Methods: Among subjects who underwent a health examination at our hospital, 1257 (men: 787, women: 474) subjects participated in fatty liver evaluation of the fatty liver index (FLI) and fatty liver predicting index (FLPI) were included in this cross-sectional study. The discriminatory ability of each index for MAFLD was tested using receiver operating characteristic curve analysis. The association between FLI, FLPI, and MAFLD was investigated using multiple logistic regression analysis. Results: FLI and FLPI had good discriminatory ability for identifying MAFLD in both men and women, with specific cutoff values. Both FLI and FLPI were significantly higher in subjects with MAFLD, and the odds of MAFLD were higher among those in the highest tertile relative to the lowest tertile in both men and women. FLI and FLPI were higher in subjects who met the criteria for both MAFLD and metabolic syndrome (MetS) compared to those who had MAFLD or MetS alone, and most of the examined parameters in subjects with both conditions indicated a high metabolic risk profile. Conclusions: The study suggests that FLI and FLPI are valuable tools for predicting MAFLD and are similarly correlated with the disease. Furthermore, the highest values of these indices were observed in subjects who met the criteria for both MAFLD and MetS, emphasizing the importance of considering both conditions when assessing metabolic risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫焰完成签到 ,获得积分10
26秒前
喜悦的唇彩完成签到,获得积分10
26秒前
飞云完成签到 ,获得积分10
30秒前
忘忧Aquarius完成签到,获得积分10
32秒前
房天川完成签到 ,获得积分10
34秒前
51秒前
科研通AI2S应助予秋采纳,获得10
54秒前
56秒前
夏夏发布了新的文献求助10
58秒前
59秒前
冷静的尔竹完成签到,获得积分10
1分钟前
177发布了新的文献求助10
1分钟前
twk发布了新的文献求助10
1分钟前
muriel完成签到,获得积分0
1分钟前
creep2020完成签到,获得积分10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得20
1分钟前
huiluowork完成签到 ,获得积分10
1分钟前
善学以致用应助twk采纳,获得10
1分钟前
Alvin完成签到 ,获得积分10
1分钟前
一天完成签到 ,获得积分10
2分钟前
积木123完成签到,获得积分10
2分钟前
2分钟前
GMEd1son完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
古炮完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
lhl完成签到,获得积分0
4分钟前
可夫司机完成签到 ,获得积分10
4分钟前
xiaowangwang完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780838
求助须知:如何正确求助?哪些是违规求助? 5659981
关于积分的说明 15453510
捐赠科研通 4911258
什么是DOI,文献DOI怎么找? 2643410
邀请新用户注册赠送积分活动 1591082
关于科研通互助平台的介绍 1545632