Adversarial learning-based domain adaptation algorithm for intracranial artery stenosis detection on multi-source datasets

计算机科学 人工智能 概化理论 稳健性(进化) 视网膜分支动脉阻塞 机器学习 算法 模式识别(心理学) 医学 荧光血管造影 视网膜 眼科 统计 化学 基因 生物化学 数学
作者
Yuan Gao,Chenbin Ma,Lishuang Guo,Guiyou Liu,Xuxiang Zhang,Xunming Ji
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108001-108001
标识
DOI:10.1016/j.compbiomed.2024.108001
摘要

Intracranial arterial stenosis (ICAS) is characterized by the pathological narrowing or occlusion of the inner lumen of intracranial blood vessels. However, the retina can indirectly react to cerebrovascular disease. Therefore, retinal fundus images (RFI) serve as valuable noninvasive and easily accessible screening tools for early detection and diagnosis of ICAS. This paper introduces an adversarial learning-based domain adaptation algorithm (ALDA) specifically designed for ICAS detection in multi-source datasets. The primary objective is to achieve accurate detection and enhanced generalization of ICAS based on RFI. Given the limitations of traditional algorithms in meeting the accuracy and generalization requirements, ALDA overcomes these challenges by leveraging RFI datasets from multiple sources and employing the concept of adversarial learning to facilitate feature representation sharing and distinguishability learning. In order to evaluate the performance of the ALDA algorithm, we conducted experimental validation on multi-source datasets. We compared its results with those obtained from other deep learning algorithms in the ICAS detection task. Furthermore, we validated the potential of ALDA for detecting diabetic retinopathy. The experimental results clearly demonstrate the significant improvements achieved by the ALDA algorithm. By leveraging information from diverse datasets, ALDA learns feature representations that exhibit enhanced generalizability and robustness. This makes it a reliable auxiliary diagnostic tool for clinicians, thereby facilitating the prevention and treatment of cerebrovascular diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏念蕾完成签到 ,获得积分10
刚刚
a雪橙完成签到 ,获得积分10
1秒前
漂亮妙柏完成签到,获得积分10
2秒前
2秒前
王大帅哥完成签到,获得积分10
2秒前
JHGG完成签到,获得积分0
2秒前
dddddddio发布了新的文献求助10
2秒前
烟花应助jun采纳,获得10
2秒前
浅蓝默完成签到,获得积分10
4秒前
球球完成签到,获得积分10
4秒前
满意的柏柳完成签到 ,获得积分10
4秒前
5秒前
whitepiece发布了新的文献求助10
6秒前
叫我益达完成签到,获得积分10
6秒前
jason204发布了新的文献求助10
8秒前
浅陌初心完成签到 ,获得积分10
8秒前
8秒前
张先生2365完成签到,获得积分10
8秒前
Darker完成签到,获得积分10
9秒前
9秒前
Ava应助kmzzy采纳,获得10
9秒前
苏苏完成签到,获得积分10
10秒前
Stageruner完成签到,获得积分10
10秒前
lin发布了新的文献求助10
11秒前
Akiyuki发布了新的文献求助10
11秒前
小星星bulingbuling完成签到,获得积分10
11秒前
11秒前
DIDIDI完成签到 ,获得积分10
12秒前
忧心的秋尽完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
Wguan完成签到,获得积分10
13秒前
缥缈的初阳完成签到,获得积分10
14秒前
淡定访琴完成签到,获得积分10
14秒前
babylow完成签到,获得积分10
15秒前
Lily完成签到,获得积分10
16秒前
华仔应助开朗向真采纳,获得10
16秒前
呆萌鱼完成签到,获得积分10
16秒前
Liyf发布了新的文献求助10
16秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3904081
求助须知:如何正确求助?哪些是违规求助? 3449040
关于积分的说明 10855673
捐赠科研通 3174395
什么是DOI,文献DOI怎么找? 1753800
邀请新用户注册赠送积分活动 848012
科研通“疑难数据库(出版商)”最低求助积分说明 790634