Machine learning with real-world HR data: mitigating the trade-off between predictive performance and transparency

透明度(行为) 业务 会计 计算机科学 计算机安全
作者
Ansgar Heidemann,Svenja M. Hülter,Michael Tekieli
出处
期刊:International Journal of Human Resource Management [Routledge]
卷期号:35 (14): 2343-2366 被引量:4
标识
DOI:10.1080/09585192.2024.2335515
摘要

Machine Learning (ML) algorithms offer a powerful tool for capturing multifaceted relationships through inductive research to gain insights and support decision-making in practice. This study contributes to understanding the dilemma whereby the more complex ML becomes, the more its value proposition can be compromised by its opacity. Using a longitudinal dataset on voluntary employee turnover from a German federal agency, we provide evidence for the underlying trade-off between predictive performance and transparency for ML, which has not been found in similar Human Resource Management (HRM) studies using artificially simulated datasets. We then propose measures to mitigate this trade-off by demonstrating the use of post-hoc explanatory methods to extract local (employee-specific) and global (organisation-wide) predictor effects. After that, we discuss their limitations, providing a nuanced perspective on the circumstances under which the use of post-hoc explanatory methods is justified. Namely, when a 'transparency-by-design' approach with traditional linear regression is not sufficient to solve HRM prediction tasks, the translation of complex ML models into human-understandable visualisations is required. As theoretical implications, this paper suggests that we can only fully understand the multi-layered HR phenomena explained to us by real-world data if we incorporate ML-based inductive methods together with traditional deductive methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ppf发布了新的文献求助10
刚刚
阵痛完成签到 ,获得积分10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
樨樨发布了新的文献求助10
2秒前
LuQihe发布了新的文献求助10
2秒前
Cnqaq发布了新的文献求助10
2秒前
完美世界应助潇洒的水神采纳,获得10
2秒前
科目三应助諵十一采纳,获得10
2秒前
laisser完成签到,获得积分10
3秒前
pp完成签到,获得积分10
3秒前
3秒前
恢复出厂设置完成签到 ,获得积分10
3秒前
柠檬酱完成签到,获得积分10
4秒前
Owen应助HOHO采纳,获得10
4秒前
4秒前
4秒前
乐乐应助奋斗的大米采纳,获得10
4秒前
酷波er应助荷月初六采纳,获得10
4秒前
4秒前
5秒前
苗啊苗完成签到,获得积分10
5秒前
呐呐完成签到,获得积分10
5秒前
三石呦423发布了新的文献求助10
6秒前
6秒前
7秒前
joker_k应助端庄白开水采纳,获得20
7秒前
万能图书馆应助iday采纳,获得10
8秒前
落俗完成签到,获得积分10
8秒前
SYLH应助zhangzikai采纳,获得30
8秒前
9秒前
ppf完成签到,获得积分20
9秒前
Akim应助负责冰凡采纳,获得10
9秒前
孔大漂亮发布了新的文献求助10
9秒前
kangkang完成签到 ,获得积分10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868