CS2DIPs: Unsupervised HSI Super-Resolution Using Coupled Spatial and Spectral DIPs

高光谱成像 计算机科学 多光谱图像 人工智能 图像分辨率 模式识别(心理学) 矩阵分解 特征向量 物理 量子力学
作者
Fang Yuan,Yipeng Liu,Chong‐Yung Chi,Zhen Long,Ce Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3090-3101 被引量:1
标识
DOI:10.1109/tip.2024.3390582
摘要

In recent years, fusing high spatial resolution multispectral images (HR-MSIs) and low spatial resolution hyperspectral images (LR-HSIs) has become a widely used approach for hyperspectral image super-resolution (HSI-SR). Various unsupervised HSI-SR methods based on deep image prior (DIP) have gained wide popularity thanks to no pre-training requirement. However, DIP-based methods often demonstrate mediocre performance in extracting latent information from the data. To resolve this performance deficiency, we propose a coupled spatial and spectral deep image priors (CS2DIPs) method for the fusion of an HR-MSI and an LR-HSI into an HR-HSI. Specifically, we integrate the nonnegative matrix-vector tensor factorization (NMVTF) into the DIP framework to jointly learn the abundance tensor and spectral feature matrix. The two coupled DIPs are designed to capture essential spatial and spectral features in parallel from the observed HR-MSI and LR-HSI, respectively, which are then used to guide the generation of the abundance tensor and spectral signature matrix for the fusion of the HSI-SR by mode-3 tensor product, meanwhile taking some inherent physical constraints into account. Free from any training data, the proposed CS2DIPs can effectively capture rich spatial and spectral information. As a result, it exhibits much superior performance and convergence speed over most existing DIP-based methods. Extensive experiments are provided to demonstrate its state-of-the-art overall performance including comparison with benchmark peer methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的灵槐完成签到,获得积分10
刚刚
刚刚
Annie发布了新的文献求助10
1秒前
芝麻球ii完成签到,获得积分10
1秒前
Charming发布了新的文献求助10
1秒前
心有意完成签到,获得积分10
2秒前
曾经荔枝发布了新的文献求助10
2秒前
发nature完成签到,获得积分10
2秒前
哦哈哈完成签到 ,获得积分10
2秒前
是是是完成签到,获得积分10
2秒前
悦耳的颜发布了新的文献求助10
2秒前
淡定诗柳完成签到,获得积分10
3秒前
科研通AI5应助跳跃的梦凡采纳,获得30
3秒前
DDDDD完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
olivia完成签到,获得积分10
4秒前
小眼儿完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
hengyuan发布了新的文献求助10
5秒前
6秒前
美满元灵完成签到,获得积分10
6秒前
hahaha完成签到,获得积分10
6秒前
6秒前
6秒前
幺幺零五完成签到,获得积分10
6秒前
wwewew完成签到,获得积分10
6秒前
多情蓝发布了新的文献求助10
7秒前
叶初彤完成签到,获得积分20
7秒前
瘦瘦完成签到,获得积分10
7秒前
樂酉完成签到 ,获得积分10
7秒前
蓓蓓发布了新的文献求助10
7秒前
lalala完成签到,获得积分20
8秒前
8秒前
灵舒完成签到,获得积分10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830751
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477730
捐赠科研通 3093242
什么是DOI,文献DOI怎么找? 1702418
邀请新用户注册赠送积分活动 819024
科研通“疑难数据库(出版商)”最低求助积分说明 771203