Identification and validation of aging-related genes in heart failure based on multiple machine learning algorithms

小桶 心力衰竭 衰老 机器学习 基因 医学 人工智能 生物 计算机科学 基因表达 转录组 内科学 遗传学
作者
Yiding Yu,Lin Wang,Wangjun Hou,Yitao Xue,Xiujuan Liu,Yan Li
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15 被引量:4
标识
DOI:10.3389/fimmu.2024.1367235
摘要

Background In the face of continued growth in the elderly population, the need to understand and combat age-related cardiac decline becomes even more urgent, requiring us to uncover new pathological and cardioprotective pathways. Methods We obtained the aging-related genes of heart failure through WGCNA and CellAge database. We elucidated the biological functions and signaling pathways involved in heart failure and aging through GO and KEGG enrichment analysis. We used three machine learning algorithms: LASSO, RF and SVM-RFE to further screen the aging-related genes of heart failure, and fitted and verified them through a variety of machine learning algorithms. We searched for drugs to treat age-related heart failure through the DSigDB database. Finally, We use CIBERSORT to complete immune infiltration analysis of aging samples. Results We obtained 57 up-regulated and 195 down-regulated aging-related genes in heart failure through WGCNA and CellAge databases. GO and KEGG enrichment analysis showed that aging-related genes are mainly involved in mechanisms such as Cellular senescence and Cell cycle. We further screened aging-related genes through machine learning and obtained 14 key genes. We verified the results on the test set and 2 external validation sets using 15 machine learning algorithm models and 207 combinations, and the highest accuracy was 0.911. Through screening of the DSigDB database, we believe that rimonabant and lovastatin have the potential to delay aging and protect the heart. The results of immune infiltration analysis showed that there were significant differences between Macrophages M2 and T cells CD8 in aging myocardium. Conclusion We identified aging signature genes and potential therapeutic drugs for heart failure through bioinformatics and multiple machine learning algorithms, providing new ideas for studying the mechanism and treatment of age-related cardiac decline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一YI发布了新的文献求助10
刚刚
gkfenomeno发布了新的文献求助10
1秒前
1秒前
田彬杰完成签到,获得积分10
3秒前
4秒前
4秒前
ximo应助ceeray23采纳,获得20
4秒前
熠旅完成签到,获得积分10
4秒前
无辜澜发布了新的文献求助10
4秒前
一YI完成签到,获得积分10
6秒前
Rocket完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
思源应助猪猪hero采纳,获得10
8秒前
9秒前
9秒前
Icey发布了新的文献求助300
11秒前
11秒前
无辜澜完成签到,获得积分10
11秒前
笨笨大侠完成签到,获得积分10
13秒前
llll发布了新的文献求助10
14秒前
Sia发布了新的文献求助10
14秒前
采薇发布了新的文献求助10
14秒前
15秒前
善学以致用应助笨笨大侠采纳,获得10
19秒前
科研通AI2S应助一切都好采纳,获得10
21秒前
21秒前
小梦完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
liaoyoujiao完成签到,获得积分10
25秒前
刘菠萝完成签到 ,获得积分10
25秒前
qphys完成签到,获得积分10
26秒前
Akim应助考拉采纳,获得10
26秒前
ellieou完成签到,获得积分10
26秒前
新手上路完成签到,获得积分10
27秒前
imol发布了新的文献求助10
27秒前
by发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490042
求助须知:如何正确求助?哪些是违规求助? 4588835
关于积分的说明 14421391
捐赠科研通 4520586
什么是DOI,文献DOI怎么找? 2476785
邀请新用户注册赠送积分活动 1462268
关于科研通互助平台的介绍 1435171