Hyperdimensional Computing With Multiscale Local Binary Patterns for Scalp EEG-Based Epileptic Seizure Detection

计算机科学 脑电图 可解释性 局部二进制模式 模式识别(心理学) 稳健性(进化) 人工智能 特征提取 二元分类 特征(语言学) 癫痫 支持向量机 机器学习 直方图 神经科学 心理学 哲学 化学 图像(数学) 基因 生物化学 语言学
作者
Yipeng Du,Yuan Ren,Ngai Wong,Edith C.‐H. Ngai
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 26046-26061 被引量:6
标识
DOI:10.1109/jiot.2024.3395496
摘要

Epilepsy is a common condition that causes frequent seizures, significantly impacting patients' daily lives. Non-invasive EEG is an effective tool for detecting seizure onset. Wearable EEG devices enable real-time monitoring and timely intervention but pose new algorithmic challenges on small model weight sizes and limited training data. Brain-inspired hyperdimensional computing (HDC) presents a potential solution for its small weight size and quick learning ability. Combining local binary pattern (LBP) codes with HDC can capture dynamic features in EEG time series. However, traditional LBP features may not offer sufficient robustness for trend modeling due to their high localization on individual samples, particularly on low-amplitude and non-stationary scalp EEG signals. To address the above challenges, this paper proposes a multi-scale LBP-based HDC (MSLBP-HDC) approach for scalp EEG analysis. Unlike traditional LBP-based HDC focusing only on the local change trend, the designed MSLBP-HDC extracts dynamic features at different time resolutions to detect abnormal cortical oscillations. The lengths of multiple temporal scales in MSLBP-HDC are determined based on the duration of spikes. Our results demonstrate that MSLBP-HDC has the highest specificity for all test seizure types and achieves competitive macroaveraging accuracy with the smallest model weight size in detection, compared to advanced deep learning, support vector machine, and HDC methods. Regarding few-shot learning performance, MSLBP-HDC outperforms existing approaches and achieves high accuracy using only 1% of the training data. Moreover, feature interpretability analysis from space and time domains highlights that MSLBP-HDC successfully extracts seizure-relevant features rather than noise or artifacts, ensuring the algorithm's reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到,获得积分10
1秒前
喵喵发布了新的文献求助10
3秒前
小蘑菇应助aurorazhao采纳,获得10
6秒前
6秒前
书蔬鱼猪完成签到,获得积分10
11秒前
alc完成签到,获得积分10
13秒前
15秒前
zz完成签到,获得积分10
15秒前
乐观乐枫完成签到 ,获得积分10
15秒前
20秒前
20秒前
22秒前
23秒前
pxy发布了新的文献求助10
23秒前
星辰发布了新的文献求助30
25秒前
baiye发布了新的文献求助30
25秒前
浮游应助hbhbj采纳,获得10
26秒前
26秒前
bnvgx完成签到,获得积分10
27秒前
Keven发布了新的文献求助10
28秒前
29秒前
传奇3应助hbhbj采纳,获得10
30秒前
31秒前
小马甲应助hbhbj采纳,获得10
33秒前
邓台佳完成签到,获得积分10
34秒前
不懂完成签到,获得积分10
35秒前
Hello应助晒太阳比赛冠军采纳,获得10
35秒前
沐梓文应助hbhbj采纳,获得10
36秒前
37秒前
wanci应助无私的犀牛采纳,获得10
38秒前
扶石完成签到,获得积分10
40秒前
42秒前
鉴湖完成签到,获得积分10
44秒前
nail完成签到,获得积分10
45秒前
佳佳完成签到,获得积分10
45秒前
46秒前
46秒前
pxy发布了新的文献求助10
47秒前
九姑娘完成签到 ,获得积分10
47秒前
所所应助杨禄圆采纳,获得10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306416
求助须知:如何正确求助?哪些是违规求助? 4452285
关于积分的说明 13854176
捐赠科研通 4339713
什么是DOI,文献DOI怎么找? 2382823
邀请新用户注册赠送积分活动 1377697
关于科研通互助平台的介绍 1345355