A first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source earth observations and machine learning

遥感 影子(心理学) 比例(比率) 气象学 环境科学 地球观测 中国 建筑模型 地理 计算机科学 地图学 卫星 模拟 工程类 航空航天工程 考古 心理治疗师 心理学
作者
Wanben Wu,Jun Ma,Ellen Banzhaf,Michael E. Meadows,Zhaowu Yu,Fengxiang Guo,Dhritiraj Sengupta,Xing-Xing Cai,Bin Zhao
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:291: 113578-113578 被引量:199
标识
DOI:10.1016/j.rse.2023.113578
摘要

Building height is a crucial variable in the study of urban environments, regional climates, and human-environment interactions. However, high-resolution data on building height, especially at the national scale, are limited. Fortunately, high spatial-temporal resolution earth observations, harnessed using a cloud-based platform, offer an opportunity to fill this gap. We describe an approach to estimate 2020 building height for China at 10 m spatial resolution based on all-weather earth observations (radar, optical, and night light images) using the Random Forest (RF) model. Results show that our building height simulation has a strong correlation with real observations at the national scale (RMSE of 6.1 m, MAE = 5.2 m, R = 0.77). The Combinational Shadow Index (CSI) is the most important contributor (15.1%) to building height simulation. Analysis of the distribution of building morphology reveals significant differences in building volume and average building height at the city scale across China. Macau has the tallest buildings (22.3 m) among Chinese cities, while Shanghai has the largest building volume (298.4 108 m3). The strong correlation between modelled building volume and socio-economic parameters indicates the potential application of building height products. The building height map developed in this study with a resolution of 10 m is open access, provides insights into the 3D morphological characteristics of cities and serves as an important contribution to future urban studies in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
缓慢尔阳发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
4秒前
隐形曼青应助kjaiod采纳,获得10
5秒前
5秒前
唉呀发布了新的文献求助30
5秒前
6秒前
6秒前
LQ发布了新的文献求助30
8秒前
哈哈发布了新的文献求助10
8秒前
搞怪莫茗发布了新的文献求助10
8秒前
fa发布了新的文献求助10
9秒前
9秒前
丘比特应助zzt采纳,获得10
10秒前
lily发布了新的文献求助10
11秒前
13秒前
NexusExplorer应助jm采纳,获得10
13秒前
14秒前
隐形曼青应助LQ采纳,获得10
14秒前
着急的青枫应助zzj采纳,获得30
14秒前
雍遥发布了新的文献求助10
15秒前
15秒前
16秒前
无心的棉花糖应助quasar采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
17秒前
彩虹儿应助科研通管家采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
加缪应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
18秒前
小明应助田奋采纳,获得10
20秒前
湘君发布了新的文献求助10
20秒前
李希完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850636
求助须知:如何正确求助?哪些是违规求助? 4149754
关于积分的说明 12855390
捐赠科研通 3897320
什么是DOI,文献DOI怎么找? 2142088
邀请新用户注册赠送积分活动 1161661
关于科研通互助平台的介绍 1061628