Electrical control of photon spin angular momentum in organic electroluminescent materials
作者
Francesco Furlan,Michal Šámal,Jiří Rybáček,Andrea Taddeucci,Marta di Girolamo,Davide Nodari,Giuliano Siligardi,Jessica Wade,Binghai Yan,Irena G. Stará,Nicola Gasparini,Matthew J. Fuchter
Abstract The photon spin information encoded in circularly polarized (CP) light is of high interest for current and future technologies, including low-power displays, encrypted communications and high-performance quantum applications. Engineering organic light-emitting diodes (LED) to emit oppositely handed electroluminescent CP light typically requires access to left- and right-handed chiral molecules. In conjugated polymer LEDs, the handedness of CP electroluminescence also depends on the active-layer thickness or direction of current flow. For a given active-layer thickness, it remains unknown whether a single-handed chiral material can emit CP light with opposite handedness in the same LED architecture. Here we demonstrate organic LEDs in which the handedness of the emitted CP electroluminescence can be controlled electrically, solely by using specific interlayers with no change in the emissive material composition or thickness. We reveal that this occurs due to a change in mechanism for the generation of CP electroluminescence, as a function of the recombination zone position within the device. This result provides a paradigm shift in the realization of organic CP-LEDs with controllable spin angular momentum information and further contributes to ongoing discussions relating the fundamental physics of chiral optoelectronics.