Enhanced CO 2 Photoconversion Efficiency in Atomic Co Immobilized Covalent Organic Frameworks Heterostructure via Boosting Charge Dynamics and Active Site Accessibility

作者
Qi Li,Xiang Li,Fanqi Luo,Shan Hu,Mang Zheng,Qian Liu,Bin Zhang,Baojiang Jiang
出处
期刊:Small [Wiley]
卷期号:: e11246-e11246
标识
DOI:10.1002/smll.202511246
摘要

Abstract Photocatalytic conversion of CO 2 into fuels and chemicals is of great significance for advancing sustainable development, yet its conversion efficiency remains constrained by inefficient charge separation and poor catalytic activity. Herein, a hybrid heterostructure is fabricated by in situ growth of bipyridine and triazine containing covalent organic frameworks (COFs) on SnS 2 nanosheets. Based on this heterostructure, a molecular engineering strategy is subsequently employed to design highly active single Co sites coordinated by bipyridine‐N motifs featuring distinctive electronic moieties. As a result, the optimized photocatalyst (SnS 2 /Co‐TAPT‐Bpy) enables an exceptional photocatalytic performance toward CO production under visible light irradiation with tunable CO/H 2 ration via changing the components of the heterojunctions. Experimental and theoretical investigations confirm that the photogenerated electrons can efficiently transfer from the SnS 2 component to the Co‐TAPT‐Bpy component through the interfacial electron field. More impressively, the electron‐deficient triazine motifs in Co‐TAPT‐BPy direct these photogenerated electrons toward the Co (II) active sites for CO 2 reduction. These atomically dispersed N‐Co‐N sites enhance CO 2 activation and protonation through d‐π orbital interactions, and suppress the competing H 2 evolution reaction, thus facilitating CO 2 conversion. This work highlights the potential of molecular regulation within heterojunctions to boost photocatalytic CO 2 conversion efficiency by optimizing charge dynamics and reaction site accessibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张发布了新的文献求助10
刚刚
惊执虫儿发布了新的文献求助10
刚刚
领导范儿应助666采纳,获得10
1秒前
抽抽应助彭猛采纳,获得10
2秒前
2秒前
可研小冲发布了新的文献求助10
2秒前
聪慧的从丹完成签到,获得积分10
3秒前
桐桐应助ZW_zw_Zw采纳,获得10
4秒前
科研通AI5应助漂亮拳采纳,获得10
5秒前
abc105完成签到,获得积分10
5秒前
6秒前
寒鸦少年完成签到,获得积分10
7秒前
隐形曼青应助淡然采纳,获得10
7秒前
汉堡包应助倪妮采纳,获得10
8秒前
Hello应助惊执虫儿采纳,获得10
9秒前
10秒前
changping应助Yc采纳,获得10
10秒前
dew应助q1nzang采纳,获得10
10秒前
勤恳傻姑发布了新的文献求助10
11秒前
神勇秋白发布了新的文献求助10
11秒前
1123应助留胡子的霆采纳,获得20
12秒前
隐形曼青应助zhaoxiao采纳,获得10
12秒前
14秒前
14秒前
沈阳医科大学完成签到 ,获得积分10
14秒前
16秒前
秋日思语发布了新的文献求助30
17秒前
17秒前
17秒前
月月鸟发布了新的文献求助10
18秒前
Andrew发布了新的文献求助10
18秒前
Zoe_Zhang发布了新的文献求助10
20秒前
爆米花应助guojingjing采纳,获得10
20秒前
啵啵阳子完成签到,获得积分10
21秒前
漂亮拳发布了新的文献求助10
22秒前
xiaocai发布了新的文献求助10
23秒前
24秒前
大个应助拼搏山水采纳,获得10
24秒前
qy完成签到,获得积分10
24秒前
Orange应助Psy采纳,获得10
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206753
求助须知:如何正确求助?哪些是违规求助? 4385036
关于积分的说明 13655562
捐赠科研通 4243437
什么是DOI,文献DOI怎么找? 2328116
邀请新用户注册赠送积分活动 1325792
关于科研通互助平台的介绍 1277955