Bayesian Approach for Damping Identification of Stay Cables Under Vortex‐Induced Vibrations

振动 涡流 贝叶斯概率 鉴定(生物学) 声学 物理 机械 计算机科学 人工智能 生物 植物
作者
Jiren Zhang,Zhouquan Feng,Jinyuan Dai,Yafei Wang,Xugang Hua,Wang‐Ji Yan
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/stc/5532528
摘要

As the span of cable‐stayed bridges increases, so does the length of stay cables, making cable vortex‐induced vibrations (VIVs) more prominent. This is particularly evident in higher‐order multimodal VIVs, which are closely linked to the damping characteristics of the cables. Traditional operational modal analysis (OMA) methods often fail under VIV conditions due to the inadequacy of the white noise excitation assumption. Moreover, potential influences from ambient vibrations and noise contamination introduce further uncertainties into the identification results. This paper addresses these challenges by proposing a novel Bayesian method for damping identification from measured VIV responses. The proposed method, based on a single‐degree‐of‐freedom (SDOF) vortex‐induced force model and the statistical properties of the power spectral density of the VIV measurements, aims to enhance the accuracy of damping identification while effectively quantifying uncertainties of identified results. The efficacy of the proposed method is validated through simulated scenarios and applied to the field test of a stay cable in the Sutong Bridge. The results not only demonstrate the method’s high accuracy in identifying damping ratios under VIV but also highlight its capability to effectively quantify the uncertainties in the identification results. This method offers a reliable approach for investigating the evolution of damping in VIV of stay cables and enhances the understanding of the mechanisms behind higher‐order multimodal VIV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
千只鹤发布了新的文献求助10
2秒前
2秒前
真实的电脑完成签到,获得积分10
3秒前
3秒前
3秒前
科研通AI5应助HHH采纳,获得10
4秒前
4秒前
小苔藓完成签到,获得积分10
5秒前
匹诺曹完成签到,获得积分10
6秒前
小猫多鱼发布了新的文献求助10
6秒前
Krystal发布了新的文献求助10
6秒前
hhh发布了新的文献求助30
6秒前
Ignis完成签到,获得积分10
7秒前
科研通AI5应助ssssss采纳,获得10
7秒前
7秒前
7秒前
Whisper完成签到,获得积分10
8秒前
8秒前
zxr发布了新的文献求助10
8秒前
小苔藓发布了新的文献求助10
8秒前
byb完成签到 ,获得积分10
9秒前
科研通AI5应助英勇的白风采纳,获得10
9秒前
HN洪完成签到,获得积分10
9秒前
隐形曼青应助冷酷的风华采纳,获得10
9秒前
9秒前
所所应助zhouzehua1003采纳,获得10
10秒前
ark861023发布了新的文献求助10
10秒前
丘比特应助饱满的千易采纳,获得10
10秒前
羽羽完成签到 ,获得积分10
11秒前
11秒前
充电宝应助GAOYI采纳,获得10
13秒前
小张完成签到,获得积分20
13秒前
爆米花应助梨小7采纳,获得10
13秒前
Wu完成签到 ,获得积分20
13秒前
爱米粒完成签到,获得积分10
13秒前
14秒前
14秒前
shenghaowen发布了新的文献求助10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813459
求助须知:如何正确求助?哪些是违规求助? 3357801
关于积分的说明 10388583
捐赠科研通 3075042
什么是DOI,文献DOI怎么找? 1689136
邀请新用户注册赠送积分活动 812578
科研通“疑难数据库(出版商)”最低求助积分说明 767210