Cobalt Single‐Atom Intercalation in Molybdenum Disulfide Enhances Piezocatalytic and Enzyodynamic Activities for Advanced Cancer Therapeutics

材料科学 空位缺陷 纳米技术 兴奋剂 二硫化钼 插层(化学) 活性氧 化学 光电子学 无机化学 生物化学 结晶学 冶金
作者
Hongwei Bai,Sujun Ding,Yanfei Dai,Jiefu Liu,Huangjing Chen,Wei Feng,Dehong Yu,Yu Chen,Xuejun Ni
出处
期刊:Advanced Science [Wiley]
卷期号:12 (14): e2415485-e2415485 被引量:12
标识
DOI:10.1002/advs.202415485
摘要

Abstract Piezoelectric semiconductor nanomaterials have attracted considerable interest in piezocatalytic tumor treatment. However, piezocatalytic therapy encounters obstacles such as suboptimal piezoelectric responses, rapid electron‐hole recombination, inefficient energy harvesting, and the complexities of the tumor microenvironment. In this study, sulfur vacancy‐engineered cobalt (Co) single‐atom doped molybdenum disulfide (SA‐Co@MoS 2 ) nanoflowers are strategically designed, which exhibit enhanced piezoelectric effects. Specifically, the introduction of Co single atom not only induces lattice distortion and out‐of‐plane polarization but also leads to the formation of numerous sulfur vacancies. These changes collectively narrow the intrinsic bandgap of the material, facilitating effective separation and migration of charge carriers, and enabling efficient production of reactive oxygen species under ultrasound stimulation. Additionally, the SA‐Co@MoS 2 nanoflowers demonstrate improved enzymatic activity and exhibit glutathione depletion capabilities attributed to the mixed valence states of Co, intensifying oxidative stress in tumor cells, and leading to cell cycle arrest and apoptosis, while the inactivation of glutathione peroxidase 4 induces ferroptosis. Both in vitro and in vivo results indicate that SA‐Co@MoS 2 nanoflowers can significantly eliminate tumor cells. This study offers valuable insights into the exploration of single‐atom doping‐enhanced piezoelectric sonosensitizers for cancer treatment, potentially paving the way for advancements in the field of piezocatalytic synergistic enzyodynamic therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
砂糖完成签到,获得积分20
刚刚
刚刚
刚刚
wyq发布了新的文献求助10
1秒前
1秒前
曾经易烟完成签到,获得积分10
1秒前
Xzai完成签到,获得积分10
1秒前
Owen应助缘然采纳,获得10
2秒前
2秒前
Annlucy完成签到 ,获得积分10
2秒前
3秒前
Maize Man发布了新的文献求助10
4秒前
山楂罐头冰冰凉完成签到,获得积分10
5秒前
5秒前
li发布了新的文献求助10
5秒前
lvyan发布了新的文献求助10
5秒前
5秒前
王一一完成签到,获得积分20
5秒前
今后应助鳗鱼鞋垫采纳,获得10
5秒前
流光发布了新的文献求助20
5秒前
6秒前
6秒前
6秒前
ccchengzi完成签到,获得积分10
6秒前
6秒前
yyy完成签到,获得积分10
7秒前
7秒前
羊毛毛衣完成签到,获得积分10
7秒前
7秒前
wjw发布了新的文献求助10
7秒前
9秒前
du发布了新的文献求助10
10秒前
10秒前
11秒前
zzz发布了新的文献求助10
11秒前
Maize Man完成签到,获得积分20
11秒前
11秒前
所所应助开放的白玉采纳,获得10
12秒前
whisper发布了新的文献求助10
12秒前
Annlucy发布了新的文献求助50
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653643
求助须知:如何正确求助?哪些是违规求助? 4790334
关于积分的说明 15065238
捐赠科研通 4812289
什么是DOI,文献DOI怎么找? 2574395
邀请新用户注册赠送积分活动 1529973
关于科研通互助平台的介绍 1488708