Multiple attention channels aggregated network for multimodal medical image fusion

计算机科学 人工智能 模式识别(心理学) 模态(人机交互) 特征(语言学) 医学影像学 块(置换群论) 融合规则 融合 模式 高光谱成像 图像融合 图像(数学) 数学 社会科学 哲学 语言学 几何学 社会学
作者
Jingxue Huang,Tianshu Tan,Xiaosong Li,Tao Ye,Yanxiong Wu
出处
期刊:Medical Physics [Wiley]
被引量:2
标识
DOI:10.1002/mp.17607
摘要

Abstract Background In clinical practices, doctors usually need to synthesize several single‐modality medical images for diagnosis, which is a time‐consuming and costly process. With this background, multimodal medical image fusion (MMIF) techniques have emerged to synthesize medical images of different modalities, providing a comprehensive and objective interpretation of the lesion. Purpose Although existing MMIF approaches have shown promising results, they often overlook the importance of multiscale feature diversity and attention interaction, which are essential for superior visual outcomes. This oversight can lead to diminished fusion performance. To bridge the gaps, we introduce a novel approach that emphasizes the integration of multiscale features through a structured decomposition and attention interaction. Methods Our method first decomposes the source images into three distinct groups of multiscale features by stacking different numbers of diverse branch blocks. Then, to extract global and local information separately for each group of features, we designed the convolutional and Transformer block attention branch. These two attention branches make full use of channel and spatial attention mechanisms and achieve attention interaction, enabling the corresponding feature channels to fully capture local and global information and achieve effective inter‐block feature aggregation. Results For the MRI‐PET fusion type, MACAN achieves average improvements of 24.48%, 27.65%, 19.24%, 27.32%, 18.51%, and 10.33% over the compared methods in terms of Q cb , AG, SSIM, SF, Q abf , and VIF metrics, respectively. Similarly, for the MRI‐SPECT fusion type, MACAN outperforms the compared methods with average improvements of 29.13%, 26.43%, 18.20%, 27.71%, 16.79%, and 10.38% in the same metrics. In addition, our method demonstrates promising results in segmentation experiments. Specifically, for the T2‐T1ce fusion, it achieves a Dice coefficient of 0.60 and a Hausdorff distance of 15.15. Comparable performance is observed for the Flair‐T1ce fusion, with a Dice coefficient of 0.60 and a Hausdorff distance of 13.27. Conclusion The proposed multiple attention channels aggregated network (MACAN) can effectively retain the complementary information from source images. The evaluation of MACAN through medical image fusion and segmentation experiments on public datasets demonstrated its superiority over the state‐of‐the‐art methods, both in terms of visual quality and objective metrics. Our code is available at https://github.com/JasonWong30/MACAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助坦率斑马采纳,获得10
1秒前
1秒前
innocent完成签到 ,获得积分10
1秒前
2秒前
独特诗兰发布了新的文献求助10
2秒前
竹林风箫发布了新的文献求助10
2秒前
牛肉面完成签到,获得积分10
4秒前
jakloc发布了新的文献求助10
5秒前
5秒前
浮游应助liushiyi采纳,获得10
6秒前
6秒前
汝坤发布了新的文献求助10
6秒前
xx发布了新的文献求助10
6秒前
7秒前
开飞机的小羊完成签到,获得积分10
7秒前
8秒前
8秒前
LL完成签到 ,获得积分10
9秒前
10秒前
坚定向彤完成签到,获得积分10
10秒前
10秒前
小u发布了新的文献求助10
11秒前
11秒前
霍华淞发布了新的文献求助10
11秒前
完美世界应助Catloaf采纳,获得10
13秒前
Hammerdai发布了新的文献求助10
13秒前
13秒前
故意的如容完成签到,获得积分10
14秒前
英俊的铭应助王志杰采纳,获得10
14秒前
量子星尘发布了新的文献求助20
14秒前
14秒前
善学以致用应助xx采纳,获得10
15秒前
15秒前
15秒前
JWKim完成签到,获得积分10
15秒前
研友_VZG7GZ应助JOY采纳,获得10
16秒前
完美世界应助LYC采纳,获得30
16秒前
充电宝发布了新的文献求助10
20秒前
在水一方应助小u采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5015778
求助须知:如何正确求助?哪些是违规求助? 4256063
关于积分的说明 13263449
捐赠科研通 4059993
什么是DOI,文献DOI怎么找? 2220536
邀请新用户注册赠送积分活动 1229806
关于科研通互助平台的介绍 1152495