已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnostic Value of Radiomics Based on Various Diffusion Models in Magnetic Resonance Imaging for Prostate Cancer Risk Stratification

医学 接收机工作特性 前列腺癌 逻辑回归 单变量 磁共振成像 多元统计 核医学 前列腺 多元分析 放射科 癌症 内科学 机器学习 计算机科学
作者
Hongkai Yang,Xuan Qi,Wuling Wang,Bing Du,Wei Xue,Shaofeng Duan,Yongsheng He,Qiong Chen
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:20
标识
DOI:10.2174/0115734056341995240906070046
摘要

Introduction: The use of Magnetic Resonance Imaging (MRI) and radiomics improves the management of Prostate Cancer (PCa) and helps in differentiating between clinically insignificant and significant PCa. This study has explored the diagnostic value of radiomic analysis based on functional parameter maps from monoexponential and diffusion kurtosis models in MRI for differentiating between clinically insignificant and significant PCa. Methods: In total, 105 PCa cases, including 38 clinically insignificant and 67 clinically significant PCa cases, were retrospectively analyzed. The patients were randomly divided into training and testing sets in a ratio of 7:3. Univariate and multivariate logistic regression analyses were performed, and 1,352 radiomic features were extracted from ADC, MD, and MK images. Clinical, radiomic, and clinical–radiomic models were developed and compared using receiver operating characteristic curve analysis, decision curve analysis, and calibration curves. Results: Clinical variables, such as TPSA, PI-RADS, and FPSA, were identified as independent risk factors for differentiating between clinically insignificant and significant PCa. In radiomics, three features were identified as highly weighted indicators. The clinical–radiomic model based on the clinical and radiomic features demonstrated the highest predictive efficacy for clinically insignificant and significant PCa, with area under the curve values of 0.940 and 0.861 in the training and test sets, respectively. Conclusion: The predictive model constructed from clinical and radiomic features exhibited substantial diagnostic differentiation capabilities for clinically insignificant and significant PCa. The clinical–radiomic model displayed the highest predictive performance, promising significant contributions to future clinical treatment and assessment of PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早日发文章完成签到,获得积分10
刚刚
英俊的铭应助张同学采纳,获得10
1秒前
大模型应助酥鱼苏采纳,获得10
3秒前
3秒前
深情安青应助aa采纳,获得10
6秒前
微笑睫毛完成签到 ,获得积分10
9秒前
10秒前
欧皇完成签到,获得积分20
10秒前
Kapur完成签到,获得积分10
12秒前
13秒前
Meyako完成签到 ,获得积分0
14秒前
科研通AI2S应助真实的青旋采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
酥鱼苏发布了新的文献求助10
18秒前
20秒前
adkdad完成签到,获得积分10
21秒前
Hx完成签到 ,获得积分10
24秒前
顾矜应助Simon采纳,获得10
26秒前
1234发布了新的文献求助10
27秒前
盐岩妍完成签到 ,获得积分10
30秒前
32秒前
水刃木完成签到,获得积分10
38秒前
共享精神应助Hx采纳,获得10
41秒前
42秒前
43秒前
Owen应助酥鱼苏采纳,获得10
44秒前
W~舞完成签到,获得积分10
45秒前
领导范儿应助自由的代容采纳,获得10
46秒前
坦率雁丝发布了新的文献求助10
46秒前
drleoyb发布了新的文献求助10
48秒前
Feren完成签到,获得积分10
50秒前
54秒前
斯文绮山完成签到 ,获得积分10
55秒前
55秒前
酥鱼苏完成签到,获得积分10
56秒前
56秒前
sallltyyy完成签到,获得积分10
58秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432070
求助须知:如何正确求助?哪些是违规求助? 4544825
关于积分的说明 14194341
捐赠科研通 4464076
什么是DOI,文献DOI怎么找? 2446949
邀请新用户注册赠送积分活动 1438286
关于科研通互助平台的介绍 1415081