Battlefield information and tactics engine (BITE): a multimodal large language model approach for battlespace management

作战空间 计算机科学 战场 语言模型 人工智能 计算机安全 古代史 历史
作者
Brian J. Connolly
标识
DOI:10.1117/12.3012352
摘要

Battlespace management requires rapid processing of large amounts of data to facilitate informed decision-making. Large Language Models (LLMs) have demonstrated near or above human performance on a wide range of cognitive tasks. Current LLMs are unreliable, have poor explainability, and are prone to bias and hallucinations. As such they are unsuitable for many defense applications, but their abilities can be studied with future, improved LLMs in mind. Specifically, LLM capabilities to synthesize defense-relevant data and make decisions in a combat environment have been largely unexplored. The battlefield information and tactics engine (BITE) uses LLMs as observers and decision-makers in a military environment. A multiplayer video game focusing on modern mechanized combat, Squad by Offworld Industries Ltd., is used as an operating environment due to its moderate realism levels and focus on audio communication between players. BITE is tasked with ingesting tactical data, providing summaries of the current situation, and giving order to a squad of human players. The present work aims to qualitatively assess the suitability of BITE, and LLMs in general, for use in battlespace management systems. Shortcomings are identified in the areas of spatial awareness, decision-making time, and reliability. However, BITE exhibits instances of competent leadership and demonstrates a generalized understanding of modern mechanized combat. While current LLMs are currently deeply unsuitable for combat environments, BITE and similar approaches show promise in wargaming and training applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqaeao完成签到,获得积分10
刚刚
体贴不悔完成签到,获得积分0
2秒前
星辰大海应助Tsugu采纳,获得10
2秒前
MARKTTE发布了新的文献求助500
4秒前
英吉利25发布了新的文献求助10
5秒前
7秒前
ali发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
心碎的黄焖鸡完成签到 ,获得积分10
13秒前
君夕扬完成签到,获得积分10
14秒前
软糖发布了新的文献求助10
15秒前
16秒前
20秒前
21秒前
机智的白猫完成签到,获得积分10
21秒前
晓泽完成签到,获得积分10
23秒前
软糖完成签到,获得积分10
24秒前
小庄完成签到,获得积分10
25秒前
cy发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
cy完成签到,获得积分20
32秒前
HHW发布了新的文献求助10
32秒前
Allen完成签到 ,获得积分10
32秒前
小李发布了新的文献求助10
32秒前
来路遥迢完成签到,获得积分10
36秒前
华仔应助cy采纳,获得10
37秒前
dntntntt完成签到,获得积分10
38秒前
李健的粉丝团团长应助July采纳,获得10
39秒前
kxy0311完成签到 ,获得积分10
40秒前
HHW完成签到,获得积分10
40秒前
yuechat完成签到,获得积分10
40秒前
万能图书馆应助yuechat采纳,获得10
44秒前
45秒前
dntntntt发布了新的文献求助10
47秒前
Xccccc完成签到 ,获得积分10
47秒前
笑点低涟妖完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4801876
求助须知:如何正确求助?哪些是违规求助? 4119892
关于积分的说明 12745639
捐赠科研通 3851850
什么是DOI,文献DOI怎么找? 2121566
邀请新用户注册赠送积分活动 1143686
关于科研通互助平台的介绍 1033904