Change Detection Methods for Remote Sensing in the Last Decade: A Comprehensive Review

遥感 环境科学 地理
作者
Guangliang Cheng,Yunmeng Huang,Xiangtai Li,Shuchang Lyu,Zhaoyang Xu,Hongbo Zhao,Qi Zhao,Shiming Xiang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (13): 2355-2355 被引量:132
标识
DOI:10.3390/rs16132355
摘要

Change detection is an essential and widely utilized task in remote sensing that aims to detect and analyze changes occurring in the same geographical area over time, which has broad applications in urban development, agricultural surveys, and land cover monitoring. Detecting changes in remote sensing images is a complex challenge due to various factors, including variations in image quality, noise, registration errors, illumination changes, complex landscapes, and spatial heterogeneity. In recent years, deep learning has emerged as a powerful tool for feature extraction and addressing these challenges. Its versatility has resulted in its widespread adoption for numerous image-processing tasks. This paper presents a comprehensive survey of significant advancements in change detection for remote sensing images over the past decade. We first introduce some preliminary knowledge for the change detection task, such as problem definition, datasets, evaluation metrics, and transformer basics, as well as provide a detailed taxonomy of existing algorithms from three different perspectives: algorithm granularity, supervision modes, and frameworks in the Methodology section. This survey enables readers to gain systematic knowledge of change detection tasks from various angles. We then summarize the state-of-the-art performance on several dominant change detection datasets, providing insights into the strengths and limitations of existing algorithms. Based on our survey, some future research directions for change detection in remote sensing are well identified. This survey paper sheds some light the topic for the community and will inspire further research efforts in the change detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
方俊驰完成签到,获得积分10
1秒前
kanong完成签到,获得积分0
4秒前
练得身形似鹤形完成签到 ,获得积分10
8秒前
可爱可愁完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
12秒前
lilylwy完成签到 ,获得积分0
15秒前
冒如怿完成签到,获得积分20
28秒前
chenxiaofang完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
BowieHuang应助冒如怿采纳,获得10
35秒前
博博要毕业完成签到 ,获得积分10
39秒前
解你所忧完成签到 ,获得积分10
44秒前
虚心岂愈完成签到 ,获得积分10
50秒前
jun完成签到,获得积分10
50秒前
zhuxf完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
50秒前
tianmengkui完成签到 ,获得积分10
51秒前
bksqc完成签到 ,获得积分10
53秒前
qq完成签到 ,获得积分10
57秒前
shhoing应助科研通管家采纳,获得10
59秒前
曾泰平完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
153266916完成签到 ,获得积分10
1分钟前
nano完成签到 ,获得积分10
1分钟前
燕晓啸完成签到 ,获得积分0
1分钟前
12345完成签到 ,获得积分10
1分钟前
曾泰平发布了新的文献求助10
1分钟前
lllllsy完成签到,获得积分10
1分钟前
桔梗完成签到 ,获得积分10
1分钟前
1分钟前
XuNan完成签到,获得积分10
1分钟前
jjgbmt完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高高高完成签到 ,获得积分10
1分钟前
1分钟前
花花2024完成签到 ,获得积分10
1分钟前
1分钟前
小白果果发布了新的文献求助10
1分钟前
luckweb发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543698
求助须知:如何正确求助?哪些是违规求助? 4629615
关于积分的说明 14611465
捐赠科研通 4571082
什么是DOI,文献DOI怎么找? 2506067
邀请新用户注册赠送积分活动 1483250
关于科研通互助平台的介绍 1454764