Privacy Protection and Statistical Efficiency Trade-Off for Federated Learning

计算机科学 差别隐私 信息隐私 计算机安全 北京 基督教牧师 中国 趋同(经济学) 保密 信息社会 随机梯度下降算法 钥匙(锁) 数据科学 软件 基础(证据) 梯度下降 信息保护政策 统计模型 统计分析 数据建模 个人可识别信息 密码学 信息敏感性 元数据 情报学
作者
Haobo Qi,Feifei Wang,Hansheng Wang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2024.0554
摘要

Federated learning is a novel framework for distributed learning, which aims to break isolated data islands, as well as protect data privacy. To further prevent privacy leakage by specially crafted attacks, differential privacy is often integrated. Although differential privacy effectively secures sensitive information, it can reduce the statistical efficiency of the resulting estimators. This leads to a trade-off relationship between statistical efficiency and privacy protection. To theoretically understand this relationship, we start with the classic linear regression model and a noise-adding federated gradient descent algorithm. Its numerical convergence properties and asymptotic properties are rigorously studied. This results in fruitful insights into the trade-off relationship between statistical efficiency and privacy protection. Guided by these theoretical understandings, we further develop a Polyak-Ruppert-type averaged estimator, which can achieve good statistical efficiency with guaranteed privacy protection. Extensive simulation studies are presented to corroborate our theoretical results. Finally, we illustrate the application of our proposed method on an enterprise community data set. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: Financial support from the National Natural Science Foundation of China [Grants 12401386, 72371241, 72495123, and 12271012], the Ministry of Education Project of Key Research Institute of Humanities and Social Sciences [Grant 22JJD910001], the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation [Grant GZB20230070], and the Beijing Municipal Social Science Foundation [Grant 24GLC033] is gratefully acknowledged. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0554 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0554 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助阁主采纳,获得10
1秒前
1秒前
tcmz9发布了新的文献求助10
1秒前
硕大的肌肉完成签到,获得积分10
2秒前
2秒前
3秒前
追寻荔枝发布了新的文献求助10
3秒前
4秒前
LXx完成签到 ,获得积分10
4秒前
cc完成签到,获得积分10
4秒前
4秒前
czshare发布了新的文献求助10
4秒前
Dreamy发布了新的文献求助10
4秒前
4秒前
zhang完成签到,获得积分10
4秒前
5秒前
moon发布了新的文献求助10
5秒前
Kate发布了新的文献求助10
5秒前
牛马发布了新的文献求助10
5秒前
1111发布了新的文献求助10
6秒前
无心客应助研友_V8Qmr8采纳,获得10
6秒前
6秒前
qingqingiqng发布了新的文献求助10
6秒前
CipherSage应助而风不止采纳,获得10
7秒前
7秒前
浮游应助田田田田采纳,获得10
7秒前
成就寄瑶完成签到,获得积分10
8秒前
sorawing完成签到,获得积分10
8秒前
彤彤完成签到,获得积分10
8秒前
cc6521完成签到,获得积分10
8秒前
8秒前
8秒前
将个烂就完成签到,获得积分10
9秒前
Brady6发布了新的文献求助30
9秒前
科目三应助成龙王采纳,获得10
9秒前
蓝梦一刀完成签到,获得积分10
9秒前
优美谷兰发布了新的文献求助10
10秒前
upupup完成签到,获得积分10
10秒前
XLH完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812