Privacy Protection and Statistical Efficiency Trade-Off for Federated Learning

计算机科学 隐私保护 统计学习 计算机安全 联合学习 互联网隐私 人工智能
作者
Haobo Qi,Feifei Wang,Hansheng Wang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2024.0554
摘要

Federated learning is a novel framework for distributed learning, which aims to break isolated data islands, as well as protect data privacy. To further prevent privacy leakage by specially crafted attacks, differential privacy is often integrated. Although differential privacy effectively secures sensitive information, it can reduce the statistical efficiency of the resulting estimators. This leads to a trade-off relationship between statistical efficiency and privacy protection. To theoretically understand this relationship, we start with the classic linear regression model and a noise-adding federated gradient descent algorithm. Its numerical convergence properties and asymptotic properties are rigorously studied. This results in fruitful insights into the trade-off relationship between statistical efficiency and privacy protection. Guided by these theoretical understandings, we further develop a Polyak-Ruppert-type averaged estimator, which can achieve good statistical efficiency with guaranteed privacy protection. Extensive simulation studies are presented to corroborate our theoretical results. Finally, we illustrate the application of our proposed method on an enterprise community data set. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: Financial support from the National Natural Science Foundation of China [Grants 12401386, 72371241, 72495123, and 12271012], the Ministry of Education Project of Key Research Institute of Humanities and Social Sciences [Grant 22JJD910001], the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation [Grant GZB20230070], and the Beijing Municipal Social Science Foundation [Grant 24GLC033] is gratefully acknowledged. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0554 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0554 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巨人肩上完成签到,获得积分10
5秒前
斯文败类应助深情寒蕾采纳,获得10
5秒前
Owen应助小茹采纳,获得10
7秒前
简单的笑蓝完成签到 ,获得积分10
10秒前
11秒前
学习完成签到 ,获得积分10
12秒前
llll发布了新的文献求助10
13秒前
郁乾完成签到,获得积分10
14秒前
飘逸晓山完成签到,获得积分10
14秒前
舒心的冷安完成签到,获得积分10
14秒前
15秒前
DDDD源发布了新的文献求助10
16秒前
17秒前
17秒前
嘻嘻哈哈完成签到,获得积分10
18秒前
乐观碧灵发布了新的文献求助10
20秒前
浑恶天完成签到,获得积分10
20秒前
马慧娜完成签到,获得积分10
21秒前
仔仔发布了新的文献求助10
22秒前
小茹发布了新的文献求助10
23秒前
eershi完成签到,获得积分10
23秒前
ding应助韦智杰采纳,获得10
25秒前
27秒前
天空之城发布了新的文献求助10
27秒前
我是老大应助llll采纳,获得10
29秒前
时尚的萝完成签到 ,获得积分10
29秒前
Liquier完成签到,获得积分10
30秒前
科研通AI2S应助夏雨微凉采纳,获得10
31秒前
乐观碧灵完成签到,获得积分10
31秒前
kate完成签到,获得积分10
33秒前
自由的思枫完成签到,获得积分10
33秒前
yusheng完成签到,获得积分10
33秒前
34秒前
豆腐干地方完成签到,获得积分10
34秒前
123发布了新的文献求助30
35秒前
Joy完成签到,获得积分10
35秒前
科研通AI2S应助胡子采纳,获得10
35秒前
威武皮带完成签到,获得积分10
36秒前
xzy998应助天空之城采纳,获得10
36秒前
负责丹亦完成签到,获得积分10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4169533
求助须知:如何正确求助?哪些是违规求助? 3704886
关于积分的说明 11691896
捐赠科研通 3391689
什么是DOI,文献DOI怎么找? 1860047
邀请新用户注册赠送积分活动 920189
科研通“疑难数据库(出版商)”最低求助积分说明 832631