Predicting Lymph Node Metastasis in Rectal Cancer: Development and Validation of a Machine Learning Model Using Clinical Data

接收机工作特性 随机森林 医学 列线图 人工智能 逻辑回归 机器学习 单变量 布里氏评分 多层感知器 计算机科学 人工神经网络 多元统计 肿瘤科 内科学
作者
Wei Hou,Chuangwei Li,Zhen Wang,Wanqin Wang,Shouhong Wan,Bingbing Zou
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:13: e73765-e73765
标识
DOI:10.2196/73765
摘要

Abstract Background Rectal cancer (RC) is a common malignant tumor, with lymph node metastasis (LNM) being a critical determinant of patient prognosis. Traditional diagnostic methods have limitations, necessitating the development of predictive models using clinical data. Objective This study aimed to construct and validate machine learning (ML) models to predict LNM risk in patients with RC based on clinical data. Methods Retrospective data from 2454 patients with RC (SEER [Surveillance, Epidemiology, and End Results] database) were split into training (n=1954) and internal validation (n=500) sets. An external cohort (n=500) was obtained from the First Affiliated Hospital of Anhui Medical University. Lymph node features identified via computed tomographic scans were integrated with clinicopathological data. Variables were selected using LASSO (Least Absolute Shrinkage and Selection Operator), followed by univariate and multivariate logistic regression. Eleven ML models (Logistic Regression, K-Nearest Neighbors, Extremely Randomized Trees, Naive Bayes, XGBoost [XBG], Light Gradient Boosting Machine, Multilayer Perceptron, Gradient Boosting, Support Vector Machine, Random Forest, and Ada-Boost) were evaluated via area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis. Results LNM prevalence was 26.9% (training), 27% (internal validation), and 81% (external validation). Independent LNM predictors included tumor grade, clinical T stage, N stage, tumor length, neural invasion, and total lymph nodes. Internal validation AUC ranged from 0.859 to 0.964; external validation AUC was 0.735‐0.838. In the internal validation set, Random Forest and Extremely Randomized Trees achieved the highest AUC (0.964, 95% CI 0.950‐0.978), while XGB demonstrated superior cross-cohort stability (AUC 0.942, 95% CI 0.925‐0.959). For external validation, Gradient Boosting had the highest AUC (0.838, 95% CI 0.801‐0.875), followed by XGB (0.832, 95%CI 0.794‐0.869). XGB showed minimal calibration error with curves closest to the ideal diagonal and yielded the highest net benefit in decision curve analysis across critical thresholds. Conclusions This study successfully developed and validated 11 ML models to predict LNM risk in RC. The XGB model was optimal, achieving an AUC >0.9 in 10 internal models and an AUC >0.8 in 7 external models. The identified predictors of LNM can facilitate early diagnosis and personalized treatment, highlighting the potential of integrating computed tomographic scan data with clinicopathological findings to build effective predictive models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ghy完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
忧伤的静竹完成签到 ,获得积分10
1秒前
2秒前
marongzhi完成签到 ,获得积分10
3秒前
937forever完成签到 ,获得积分10
3秒前
0529完成签到,获得积分10
3秒前
九九发布了新的文献求助10
4秒前
lmq完成签到 ,获得积分10
4秒前
serendipity关注了科研通微信公众号
4秒前
ananan完成签到,获得积分10
5秒前
半岛铁盒完成签到,获得积分10
5秒前
orchid发布了新的文献求助10
5秒前
竹马子发布了新的文献求助10
5秒前
林希孟完成签到 ,获得积分10
5秒前
典雅的静完成签到,获得积分10
6秒前
科研狗发布了新的文献求助10
6秒前
善学以致用应助下文献采纳,获得10
6秒前
高贵凡灵完成签到,获得积分10
7秒前
于吉武完成签到,获得积分10
8秒前
丘比特应助ghy采纳,获得10
8秒前
allanqiao发布了新的文献求助10
8秒前
wwxd发布了新的文献求助10
9秒前
小帅完成签到,获得积分10
9秒前
jsdiohfsiodhg完成签到,获得积分10
9秒前
乐乐应助un采纳,获得10
9秒前
不问归期的风完成签到,获得积分0
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
小明应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
10秒前
奋斗的大白菜完成签到,获得积分10
10秒前
丰富的慕卉完成签到,获得积分10
11秒前
王圈完成签到,获得积分10
11秒前
wwwyh完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4997339
求助须知:如何正确求助?哪些是违规求助? 4243400
关于积分的说明 13217805
捐赠科研通 4040225
什么是DOI,文献DOI怎么找? 2210708
邀请新用户注册赠送积分活动 1221289
关于科研通互助平台的介绍 1141055