Synthetic aperture radar and optical image registration using local and global feature learning by modality-shared attention network

合成孔径雷达 模态(人机交互) 人工智能 计算机科学 特征(语言学) 判别式 深度学习 计算机视觉 特征提取 卷积神经网络 特征学习 相似性(几何) 图像(数学) 模式识别(心理学) 哲学 语言学
作者
Xin Hu,Yan Wu,Zhikang Li,Xiaoru Zhao,Xingyu Liu,Ming Li
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:17 (03) 被引量:4
标识
DOI:10.1117/1.jrs.17.036504
摘要

The registration of synthetic aperture radar (SAR) and optical images is a meaningful but challenging multimodal task. Due to the large radiometric differences between SAR and optical images, it is difficult to obtain discriminative features only by mining local features in the traditional Siamese convolutional networks. We propose a modality-shared attention network (MSA-Net) that introduces nonlocal attention (NLA) to the partially shared two-stream network to jointly exploit local and global features. First, a modality-specific feature learning module is designed to efficiently extract shallow modality-specific features from SAR and optical images. Subsequently, a modality-shared feature learning (MShFL) module is designed to extract deep modality-shared features. The local feature extraction module and the NLA module in MShFL extract deep local and global features to enrich feature representations. Furthermore, a triplet loss function with a cross-modality similarity constraint is constructed to learn modality-shared feature representations, thereby reducing nonlinear radiometric differences between the two modalities. The MSA-Net is trained on a public SAR and optical dataset and tested on five pairs of SAR and optical images. In the registration results of five pairs of test SAR and optical images, the matching rate of the MSA-Net is 5% to 15% higher than that of other compared methods, and the matching errors of the matched inliers are on average reduced by about 0.28. Several ablation experiments verify the effectiveness of the partially shared network structure, the MShFL module, and the cross-modality similarity constraint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
吉祥高趙发布了新的文献求助10
1秒前
果粒橙子完成签到 ,获得积分10
1秒前
虚幻的捕发布了新的文献求助10
1秒前
CodeCraft应助洽洽瓜子shine采纳,获得10
1秒前
leidu完成签到,获得积分10
1秒前
小茗同学完成签到,获得积分20
2秒前
天天发布了新的文献求助10
2秒前
今后应助傅英俊采纳,获得10
2秒前
易研学术发布了新的文献求助10
3秒前
周林夕16888完成签到,获得积分10
3秒前
3秒前
点墨完成签到 ,获得积分10
4秒前
4秒前
小茗同学发布了新的文献求助10
4秒前
5秒前
Only发布了新的文献求助10
5秒前
5秒前
CR完成签到,获得积分10
5秒前
CYJ发布了新的文献求助10
6秒前
6秒前
常改名完成签到,获得积分10
6秒前
泡泡茶壶发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
小马甲应助真实的亦凝采纳,获得10
7秒前
星辰大海应助怡然之玉采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
白灼西兰花完成签到,获得积分10
8秒前
万能图书馆应助风清扬采纳,获得10
8秒前
shuye发布了新的文献求助10
9秒前
9秒前
Owen应助柑橘乌云采纳,获得10
9秒前
10秒前
10秒前
星辰大海应助自由老头采纳,获得10
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750533
求助须知:如何正确求助?哪些是违规求助? 5464445
关于积分的说明 15367142
捐赠科研通 4889534
什么是DOI,文献DOI怎么找? 2629268
邀请新用户注册赠送积分活动 1577591
关于科研通互助平台的介绍 1534036