Comparative of machine learning classification strategies for electron energy loss spectroscopy: Support vector machines and artificial neural networks

支持向量机 人工智能 人工神经网络 机器学习 超参数优化 规范化(社会学) 模式识别(心理学) 计算机科学 电子能量损失谱 物理 光学 透射电子显微镜 人类学 社会学
作者
Daniel del-Pozo-Bueno,Demie Kepaptsoglou,F. Peiró,Sònia Estradé
出处
期刊:Ultramicroscopy [Elsevier]
卷期号:253: 113828-113828 被引量:24
标识
DOI:10.1016/j.ultramic.2023.113828
摘要

Machine Learning (ML) strategies applied to Scanning and conventional Transmission Electron Microscopy have become a valuable tool for analyzing the large volumes of data generated by various S/TEM techniques. In this work, we focus on Electron Energy Loss Spectroscopy (EELS) and study two ML techniques for classifying spectra in detail: Support Vector Machines (SVM) and Artificial Neural Networks (ANN). Firstly, we systematically analyze the optimal configurations and architectures for ANN classifiers using random search and the tree-structured Parzen estimator methods. Secondly, a new kernel strategy is introduced for the soft-margin SVMs, the cosine kernel, which offers a significant advantage over the previously studied kernels and other ML classification strategies. This kernel allows us to bypass the normalization of EEL spectra, achieving accurate classification. This result is highly relevant for the EELS community since we also assess the impact of common normalization techniques on our spectra using Uniform Manifold Approximation and Projection (UMAP), revealing a strong bias introduced in the spectra once normalized. In order to evaluate and study both classification strategies, we focus on determining the oxidation state of transition metals through their EEL spectra, examining which feature is more suitable for oxidation state classification: the oxygen K peak or the transition metal white lines. Subsequently, we compare the resistance to energy loss shifts for both classifiers and present a strategy to improve their resistance. The results of this study suggest the use of soft-margin SVMs for simpler EELS classification tasks with a limited number of spectra, as they provide performance comparable to ANNs while requiring lower computational resources and reduced training times. Conversely, ANNs are better suited for handling complex classification problems with extensive training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Asuna发布了新的文献求助10
3秒前
乐乐应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得30
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
科研菜j应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
小新应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
unqiue应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
Asuna完成签到,获得积分10
9秒前
沉静山兰发布了新的文献求助10
11秒前
13秒前
Orange应助加百莉采纳,获得10
14秒前
小王要努力完成签到,获得积分10
15秒前
蜗牛驳回了厚朴应助
16秒前
面团应助困困羊采纳,获得10
18秒前
18秒前
科研通AI6应助Jodie采纳,获得50
18秒前
BowieHuang应助小王要努力采纳,获得10
18秒前
19秒前
caixiaoz发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566