Forming process prediction of a self-piercing riveted joint in carbon fibre reinforced composites and aluminium alloy based on deep learning

铆钉 材料科学 接头(建筑物) 结构工程 复合材料 有限元法 过程(计算) 横截面(物理) 变形(气象学) 人工智能 计算机科学 工程类 量子力学 操作系统 物理
作者
Yang Liu,Qingjun Wu,Pengyue Wang,Weimin Zhuang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:106: 453-464 被引量:17
标识
DOI:10.1016/j.jmapro.2023.10.015
摘要

As a mechanical internal locking structure, the forming process of a self-piercing riveted (SPR) joint is currently mainly investigated through riveting interruption experiments and finite element simulation. To solve the problems of complex simulation modelling processes, high experimental costs, and low efficiency, an SPR process prediction method based on deep learning was proposed to predict the deformation process and damage of SPR joints in carbon fibre-reinforced composites and aluminium alloys. The original images of the model dataset were obtained based on the simulation results, and image segmentation technology was used to classify the cross-section and damage morphology of the joint. A deep learning model based on a convolutional neural network and conditional generation antagonism model architecture was established, and the section shape and damage morphology of the joint were predicted by inputting the percentage of punch displacement. The k-fold cross validation method was used for model training, and the untrained data were used as the test set to verify the predictive ability of the model by comparing the forming section parameters of the SPR joint. The results show that the deep learning model used can accurately predict the deformation state and damage evolution of riveted materials at different joining stages. The average prediction accuracies of the height of the riveted head, residual thickness, and rivet spread are 95.80 %, 95.68 %, and 92.40 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
深情安青应助ZiJay采纳,获得10
2秒前
明亮嘉熙完成签到,获得积分10
5秒前
7秒前
yao完成签到,获得积分10
8秒前
欣喜的薯片完成签到 ,获得积分10
8秒前
溜了溜了完成签到 ,获得积分10
9秒前
明天完成签到 ,获得积分10
9秒前
9秒前
爱打乒乓球完成签到,获得积分10
11秒前
黄飚完成签到,获得积分10
12秒前
12秒前
haoduoyu完成签到,获得积分10
12秒前
ZiJay发布了新的文献求助10
13秒前
13秒前
火星上雅寒完成签到,获得积分10
13秒前
Isaac完成签到 ,获得积分10
13秒前
风一样的风干肠完成签到 ,获得积分10
13秒前
14秒前
夏日的极光完成签到,获得积分10
14秒前
16秒前
深情的大碗完成签到 ,获得积分10
16秒前
情怀应助2182265539采纳,获得10
19秒前
golfgold发布了新的文献求助10
20秒前
¥#¥-11发布了新的文献求助10
22秒前
共享精神应助火星上雅寒采纳,获得10
22秒前
大河细流完成签到,获得积分10
23秒前
25秒前
25秒前
-17完成签到 ,获得积分10
26秒前
28秒前
30秒前
101完成签到 ,获得积分10
30秒前
weiyu完成签到,获得积分10
30秒前
APTX486911完成签到,获得积分10
31秒前
31秒前
叶子完成签到 ,获得积分10
32秒前
yy完成签到,获得积分10
32秒前
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722