RETA: 4D Radar-Based End-to-End Joint Tracking and Activity Estimation for Low-Observable Pedestrian Safety in Cluttered Traffic Scenarios

行人 雷达跟踪器 计算机科学 可见的 雷达 人行横道 行人检测 运输工程 工程类 电信 物理 量子力学
作者
Zhenyuan Zhang,Huizhen Lai,Darong Huang,Xin Fang,Mu Zhou,Ying Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 4413-4426
标识
DOI:10.1109/tits.2023.3321463
摘要

Due to the small radar cross section (RCS), pedestrians are typical low-observable traffic participants for radar-based automotive perception systems. The early detection and understanding of pedestrians' activities are of great significance to automotive safety. To this end, this paper presents an end-to-end joint tracking and activity estimation (RETA) system based on 4D automotive radar, which deals in particular with pedestrian activity identification under cluttered real-world scenes. Firstly, a novel integrated detection and tracking algorithm is proposed to guarantee positioning accuracy, in which all unthresholded 4D radar measurements are incorporated to explore the spatial coherent information across multiple frames, avoiding weak target information loss. After that, to discriminate continuous activities with varying durations in sequential trajectories, this paper innovatively presents a decomposed connectionist recurrent convolutional neural network, which facilitates fused temporal-spatial motion feature extraction. Especially, the labor-consuming activity pre-segmentation problem is circumvented with the help of a connectionist temporal classification algorithm in the proposed neural network. At last, RETA can be implemented for real end-to-end perception applications. Extensive experiment results highlight its superiority and effectiveness by attaining a continuous recognition accuracy of 94.8%. To the best of our knowledge, this is the first end-to-end activity recognition system specific for low-observable pedestrians. A demonstration video recorded in challenging practical traffic scenarios has been uploaded in the supplementary materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早睡早起的安完成签到,获得积分10
8秒前
jokerhoney完成签到,获得积分10
8秒前
雨rain完成签到 ,获得积分10
12秒前
lan发布了新的文献求助10
22秒前
CMD完成签到 ,获得积分10
23秒前
kidd瑞完成签到,获得积分10
28秒前
懒猫完成签到,获得积分10
30秒前
xingyi完成签到,获得积分10
30秒前
yujie完成签到 ,获得积分10
30秒前
景笑天完成签到,获得积分10
33秒前
Noah完成签到 ,获得积分0
37秒前
Haibrar完成签到 ,获得积分10
41秒前
踏实的无敌完成签到,获得积分10
43秒前
45秒前
拼搏念蕾完成签到 ,获得积分10
48秒前
lu完成签到,获得积分10
51秒前
小小智完成签到,获得积分0
51秒前
务实的奇迹完成签到 ,获得积分10
54秒前
菠萝吹雪完成签到,获得积分10
1分钟前
lan完成签到,获得积分10
1分钟前
翁雁丝完成签到 ,获得积分0
1分钟前
河鲸完成签到 ,获得积分10
1分钟前
不吃了完成签到 ,获得积分10
1分钟前
李李05完成签到,获得积分10
1分钟前
英俊的铭应助lan采纳,获得10
1分钟前
GTRK完成签到 ,获得积分10
1分钟前
满天星辰独览完成签到 ,获得积分10
1分钟前
hjygzv完成签到,获得积分10
1分钟前
lhy12345完成签到 ,获得积分10
1分钟前
无趣养乐多完成签到 ,获得积分10
1分钟前
ccrr完成签到 ,获得积分10
1分钟前
乔治韦斯莱完成签到 ,获得积分10
1分钟前
laber应助科研通管家采纳,获得30
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
Estella完成签到,获得积分10
1分钟前
1分钟前
wanci应助wendydqw采纳,获得10
1分钟前
sdbz001完成签到,获得积分10
1分钟前
Lxx完成签到 ,获得积分10
1分钟前
刺猬完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234508
捐赠科研通 3043130
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 758994