A Novel Redacted Extended Kalman Filter and Fuzzy Logic-Based Technique for Measurement of State-of-Charge of Lithium-Ion Battery

荷电状态 模糊逻辑 卡尔曼滤波器 扩展卡尔曼滤波器 控制理论(社会学) 计算机科学 稳健性(进化) 算法 噪音(视频) 工程类 电池(电) 人工智能 功率(物理) 生物化学 图像(数学) 控制(管理) 物理 化学 基因 量子力学
作者
Chinmay Bera,Rajib Mandal,Amitesh Kumar
出处
期刊:Journal of electrochemical energy conversion and storage [ASM International]
卷期号:21 (4) 被引量:4
标识
DOI:10.1115/1.4064096
摘要

Abstract This paper presents a novel technique based on an adaptive approach of redacted extended Kalman filter (REKF) assimilating fuzzy logic features for measuring the state-of-charge (SoC) of lithium-ion batteries. Accurately determining SoC is crucial for maximizing battery capacity and performance. However, existing extended Kalman filtering algorithms suffer from issues such as inadequate noise resistance and noise sensitivity, as well as difficulties in selecting the forgetting factor. The aforementioned REKF technique addresses these challenges adequately for accurate measurement of SoC. The proposed method involves establishing a Thevenin equivalent circuit model and using the recursive least squares with forgetting factor (RLSFF) to identify model parameters. Furthermore, an evaluation factor is established, and to adaptively adjust the value of the forgetting factor, fuzzy control is utilized, which enhances the extended Kalman filtering algorithm with noise adaptive algorithm features to estimate the SoC accurately. This modified algorithm considers the identification results from the parameter estimation step and executes them circularly to achieve precise SoC estimation. Results demonstrate that the proposed method has excellent robustness and estimation accuracy compared to other filtering algorithms, even under variable working conditions, including a wide range of state-of-health (SOH) and temperature. The proposed method is expected to enhance the performance of battery management systems for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欧阳完成签到,获得积分10
2秒前
axiang完成签到,获得积分10
3秒前
bingsu108完成签到,获得积分10
4秒前
dsm完成签到 ,获得积分10
4秒前
在水一方应助隐形的芹菜采纳,获得10
5秒前
yangyang发布了新的文献求助10
6秒前
桐桐应助敏家采纳,获得10
7秒前
暗香完成签到,获得积分10
7秒前
噜噜噜完成签到 ,获得积分10
8秒前
所所应助ref:rain采纳,获得10
9秒前
脑洞疼应助Whenryuan采纳,获得10
9秒前
kkuang完成签到 ,获得积分20
9秒前
fairy完成签到,获得积分20
9秒前
复杂的寒荷完成签到 ,获得积分10
10秒前
正直的魔镜完成签到 ,获得积分10
11秒前
12秒前
14秒前
天天快乐应助luluyang采纳,获得200
14秒前
111111发布了新的文献求助10
16秒前
17秒前
17秒前
prozac发布了新的文献求助10
18秒前
whs发布了新的文献求助10
18秒前
好猛硬汉发布了新的文献求助10
19秒前
19秒前
桃花落完成签到,获得积分10
19秒前
来日方长完成签到 ,获得积分10
19秒前
20秒前
21秒前
23秒前
蜗居发布了新的文献求助10
24秒前
25秒前
tsuki发布了新的文献求助30
26秒前
qianyue发布了新的文献求助10
26秒前
哈哈发布了新的文献求助10
26秒前
30秒前
31秒前
浮游应助xiemeili采纳,获得10
31秒前
BoBo完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299382
求助须知:如何正确求助?哪些是违规求助? 4447543
关于积分的说明 13843076
捐赠科研通 4333171
什么是DOI,文献DOI怎么找? 2378566
邀请新用户注册赠送积分活动 1373887
关于科研通互助平台的介绍 1339425