Targeting for Long-Term Outcomes

结果(博弈论) 期限(时间) 收入 计算机科学 现状 计量经济学 经济 精算学 微观经济学 财务 市场经济 物理 量子力学
作者
Jeremy Yang,Dean Eckles,Paramveer S. Dhillon,Sinan Aral
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (6): 3841-3855 被引量:27
标识
DOI:10.1287/mnsc.2023.4881
摘要

Decision makers often want to target interventions so as to maximize an outcome that is observed only in the long term. This typically requires delaying decisions until the outcome is observed or relying on simple short-term proxies for the long-term outcome. Here, we build on the statistical surrogacy and policy learning literatures to impute the missing long-term outcomes and then approximate the optimal targeting policy on the imputed outcomes via a doubly robust approach. We first show that conditions for the validity of average treatment effect estimation with imputed outcomes are also sufficient for valid policy evaluation and optimization; furthermore, these conditions can be somewhat relaxed for policy optimization. We apply our approach in two large-scale proactive churn management experiments at The Boston Globe by targeting optimal discounts to its digital subscribers with the aim of maximizing long-term revenue. Using the first experiment, we evaluate this approach empirically by comparing the policy learned using imputed outcomes with a policy learned on the ground-truth, long-term outcomes. The performance of these two policies is statistically indistinguishable, and we rule out large losses from relying on surrogates. Our approach also outperforms a policy learned on short-term proxies for the long-term outcome. In a second field experiment, we implement the optimal targeting policy with additional randomized exploration, which allows us to update the optimal policy for future subscribers. Over three years, our approach had a net-positive revenue impact in the range of $4–$5 million compared with the status quo. This paper was accepted by Eric Anderson, marketing. Funding: This work was supported by Boston Globe Media. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2023.4881 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到,获得积分10
1秒前
科研通AI6应助jc哥采纳,获得10
2秒前
3秒前
真真完成签到,获得积分10
3秒前
4秒前
77完成签到,获得积分10
4秒前
大力的元柏完成签到,获得积分10
4秒前
lgc发布了新的文献求助10
5秒前
田甜甜完成签到 ,获得积分10
7秒前
8秒前
杏仁完成签到,获得积分10
8秒前
77发布了新的文献求助50
8秒前
蹇蹇完成签到 ,获得积分10
8秒前
晓晓完成签到 ,获得积分10
9秒前
香蕉觅云应助刚睡醒采纳,获得10
12秒前
Li发布了新的文献求助10
13秒前
Joker完成签到,获得积分10
13秒前
鹿立轩完成签到 ,获得积分10
19秒前
19秒前
19秒前
19秒前
zhoupeng发布了新的文献求助10
21秒前
24秒前
25秒前
半眠日记完成签到,获得积分10
25秒前
26秒前
林林完成签到,获得积分10
28秒前
chen1357ying发布了新的文献求助10
29秒前
FWX发布了新的文献求助10
29秒前
Glufo发布了新的文献求助10
30秒前
刚睡醒发布了新的文献求助10
30秒前
31秒前
倩倩完成签到,获得积分10
32秒前
32秒前
小马甲应助zhoupeng采纳,获得10
33秒前
xianyaoz完成签到 ,获得积分0
35秒前
zzuli_liu完成签到,获得积分10
35秒前
小小鱼完成签到,获得积分10
36秒前
满意麦片发布了新的文献求助10
36秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841