Boundary delineation in transrectal ultrasound images for region of interest of prostate

雅卡索引 分割 计算机科学 人工智能 前列腺近距离放射治疗 感兴趣区域 基本事实 稳健性(进化) 前列腺 前列腺癌 超声波 Sørensen–骰子系数 相似性(几何) 近距离放射治疗 计算机视觉 图像分割 模式识别(心理学) 医学 放射科 图像(数学) 癌症 内科学 化学 放射治疗 基因 生物化学
作者
Tao Peng,Yan Dong,Gongye Di,Jing Zhao,Li Tian,Ge Ren,Lei Zhang,Jing Cai
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (19): 195008-195008 被引量:5
标识
DOI:10.1088/1361-6560/acf5c5
摘要

Accurate and robust prostate segmentation in transrectal ultrasound (TRUS) images is of great interest for ultrasound-guided brachytherapy for prostate cancer. However, the current practice of manual segmentation is difficult, time-consuming, and prone to errors. To overcome these challenges, we developed an accurate prostate segmentation framework (A-ProSeg) for TRUS images. The proposed segmentation method includes three innovation steps: (1) acquiring the sequence of vertices by using an improved polygonal segment-based method with a small number of radiologist-defined seed points as prior points; (2) establishing an optimal machine learning-based method by using the improved evolutionary neural network; and (3) obtaining smooth contours of the prostate region of interest using the optimized machine learning-based method. The proposed method was evaluated on 266 patients who underwent prostate cancer brachytherapy. The proposed method achieved a high performance against the ground truth with a Dice similarity coefficient of 96.2% ± 2.4%, a Jaccard similarity coefficient of 94.4% ± 3.3%, and an accuracy of 95.7% ± 2.7%; these values are all higher than those obtained using state-of-the-art methods. A sensitivity evaluation on different noise levels demonstrated that our method achieved high robustness against changes in image quality. Meanwhile, an ablation study was performed, and the significance of all the key components of the proposed method was demonstrated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的苡完成签到,获得积分10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
领导范儿应助勤劳柚子采纳,获得30
3秒前
冰魂应助bibgyueli采纳,获得10
3秒前
香蕉觅云应助谢书繁采纳,获得10
4秒前
精明的善斓完成签到,获得积分10
4秒前
wangwangwang完成签到,获得积分10
6秒前
7秒前
香蕉觅云应助log采纳,获得10
8秒前
慕青应助魔幻傲霜采纳,获得10
9秒前
多多发布了新的文献求助10
12秒前
renpp822发布了新的文献求助10
13秒前
闪闪寒云完成签到 ,获得积分10
15秒前
XL发布了新的文献求助30
15秒前
zhentg完成签到,获得积分10
18秒前
18秒前
Ricardo完成签到,获得积分10
18秒前
hsiao_yang完成签到 ,获得积分10
18秒前
EthanLu发布了新的文献求助30
20秒前
20秒前
21秒前
胡志飞发布了新的文献求助10
21秒前
冯哥侃大山完成签到 ,获得积分10
23秒前
24秒前
24秒前
今后应助一只小黑胖采纳,获得10
24秒前
sangsang发布了新的文献求助10
25秒前
土豆酱发布了新的文献求助10
26秒前
yuki发布了新的文献求助10
26秒前
隐形曼青应助楼松思采纳,获得10
27秒前
常涑完成签到,获得积分10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377526
关于积分的说明 10498888
捐赠科研通 3097008
什么是DOI,文献DOI怎么找? 1705417
邀请新用户注册赠送积分活动 820558
科研通“疑难数据库(出版商)”最低求助积分说明 772123