Fine-tuning pre-trained neural networks for medical image classification in small clinical datasets

计算机科学 过度拟合 卷积神经网络 人工智能 学习迁移 深度学习 机器学习 领域(数学分析) 上下文图像分类 模式识别(心理学) 人工神经网络 图像(数学) 数学分析 数学
作者
Newton Spolaôr,Huei Lee,Ana Isabel Mendes,Conceição Nogueira,Antonio Rafael Sabino Parmezan,Weber Shoity Resende Takaki,Cláudio Saddy Rodrigues Coy,Feng Chung Wu,Rui Fonseca-Pinto
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:83 (9): 27305-27329 被引量:30
标识
DOI:10.1007/s11042-023-16529-w
摘要

Convolutional neural networks have been effective in several applications, arising as a promising supporting tool in a relevant Dermatology problem: skin cancer diagnosis. However, generalizing well can be difficult when little training data is available. The fine-tuning transfer learning strategy has been employed to differentiate properly malignant from non-malignant lesions in dermoscopic images. Fine-tuning a pre-trained network allows one to classify data in the target domain, occasionally with few images, using knowledge acquired in another domain. This work proposes eight fine-tuning settings based on convolutional networks previously trained on ImageNet that can be employed mainly in limited data samples to reduce overfitting risk. They differ on the architecture, the learning rate and the number of unfrozen layer blocks. We evaluated the settings in two public datasets with 104 and 200 dermoscopic images. By finding competitive configurations in small datasets, this paper illustrates that deep learning can be effective if one has only a few dozen malignant and non-malignant lesion images to study and differentiate in Dermatology. The proposal is also flexible and potentially useful for other domains. In fact, it performed satisfactorily in an assessment conducted in a larger dataset with 746 computerized tomographic images associated with the coronavirus disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
小毛完成签到,获得积分10
2秒前
2秒前
丫丫完成签到,获得积分10
3秒前
Rachel发布了新的文献求助10
3秒前
析木发布了新的文献求助10
3秒前
4秒前
5秒前
科研通AI6应助666采纳,获得10
5秒前
隐形寄柔发布了新的文献求助10
5秒前
jcx发布了新的文献求助10
5秒前
852应助石头采纳,获得10
5秒前
daniel完成签到,获得积分10
6秒前
小高完成签到 ,获得积分10
7秒前
7秒前
董zh完成签到,获得积分10
7秒前
NaNa发布了新的文献求助10
8秒前
丘比特应助甝虪采纳,获得10
9秒前
9秒前
chen发布了新的文献求助10
10秒前
10秒前
句号完成签到,获得积分10
10秒前
Rachel完成签到,获得积分20
11秒前
qiao发布了新的文献求助10
11秒前
777完成签到,获得积分10
12秒前
12秒前
12秒前
共享精神应助32采纳,获得10
12秒前
xue发布了新的文献求助10
13秒前
情怀应助洛言lj采纳,获得10
13秒前
14秒前
xzl发布了新的文献求助10
14秒前
14秒前
namelorna发布了新的文献求助10
15秒前
ro发布了新的文献求助10
15秒前
15秒前
16秒前
666发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812