Apple leaf disease recognition method based on Siamese dilated Inception network with less training samples

人工智能 相似性(几何) 模式识别(心理学) 计算机科学 联营 图像(数学) 比例(比率) 深度学习 余弦相似度 计算机视觉 地图学 地理
作者
Shanwen Zhang,Li Wang,Chang-Qing Yu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108188-108188 被引量:9
标识
DOI:10.1016/j.compag.2023.108188
摘要

The application of existing deep learning networks may prove difficult when datasets are small. Siamese network can achieve better accuracy on small dataset. A recognition method of apple leaf disease based on Siamese dilated Inception network (SDINet) with few training samples is proposed. Dilated Inception module is introduced into AlexNet to construct two subnetworks for SDINet, and two subnetworks are responsible for extracting multi-scale features from image pair in the same layer, and the global pooling instead of the fully connected layers are utilized to reduce the number of model parameters and ensure that the features are not lost. SDINet is trained with image pairs, each pair consisting of two real diseased leaf images or one real and one healthy leaf image. SDINet makes full use of the advantages of multi-scale dilated Inception to enrich and improve the information, enhance the adaptability of the model. Different from the existing deep CNNs, SDINet uses cosine distance learning to calculate the similarity between the leaf image pairs to recognize apple diseases. Experimental results on the apple diseased leaf image dataset validate that the proposed method is effective to recognize apple leaf disease using a small number of training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待听安发布了新的文献求助10
刚刚
1秒前
香蕉觅云应助Jinnan采纳,获得10
1秒前
深情安青应助万安安采纳,获得10
1秒前
打打应助结实大象采纳,获得10
2秒前
深情安青应助魁梧的涵柏采纳,获得10
2秒前
3秒前
3秒前
yingxutravel完成签到,获得积分10
3秒前
wu关闭了wu文献求助
4秒前
超帅的访云完成签到,获得积分10
4秒前
LL完成签到,获得积分10
4秒前
小二郎应助太阳采纳,获得10
5秒前
gogogog完成签到 ,获得积分10
5秒前
烂漫的冰蓝完成签到,获得积分20
5秒前
Monica完成签到,获得积分10
5秒前
5秒前
素素发布了新的文献求助20
5秒前
jeas777发布了新的文献求助10
6秒前
6秒前
xin_ok发布了新的文献求助10
6秒前
7秒前
清萍红檀完成签到,获得积分10
7秒前
可靠之玉完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
天上的云在飘完成签到,获得积分20
9秒前
msy完成签到,获得积分10
9秒前
10秒前
10秒前
小古完成签到,获得积分10
10秒前
10秒前
爆米花应助Jepsen采纳,获得10
10秒前
123完成签到,获得积分10
11秒前
11秒前
所所应助NNN采纳,获得10
11秒前
传奇3应助爱笑的傲薇采纳,获得10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798