A review of synthetic and augmented training data for machine learning in ultrasonic non-destructive evaluation

计算机科学 过度拟合 合成数据 人工智能 机器学习 背景(考古学) 实验数据 有限元法 人工神经网络 叠加原理 试验数据 量子力学 生物 热力学 统计 物理 古生物学 数学 程序设计语言
作者
Sebastian Uhlig,I. Alkhasli,Frank Schubert,Carsten Tschöpe,Matthias Wolff
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:134: 107041-107041 被引量:16
标识
DOI:10.1016/j.ultras.2023.107041
摘要

Ultrasonic Testing (UT) has seen increasing application of machine learning (ML) in recent years, promoting higher-level automation and decision-making in flaw detection and classification. Building a generalized training dataset to apply ML in non-destructive evaluation (NDE), and thus UT, is exceptionally difficult since data on pristine and representative flawed specimens are needed. Yet, in most UT test cases flawed specimen data is inherently rare making data coverage the leading problem when applying ML. Common data augmentation (DA) strategies offer limited solutions as they don't increase the dataset variance, which can lead to overfitting of the training data. The virtual defect method and the recent application of generative adversarial neural networks (GANs) in UT are sophisticated DA methods targeting to solve this problem. On the other hand, well-established research in modeling ultrasonic wave propagations allows for the generation of synthetic UT training data. In this context, we present a first thematic review to summarize the progress of the last decades on synthetic and augmented UT training data in NDE. Additionally, an overview of methods for synthetic UT data generation and augmentation is presented. Among numerical methods such as finite element, finite difference, and elastodynamic finite integration methods, semi-analytical methods such as general point source synthesis, superposition of Gaussian beams, and the pencil method as well as other UT modeling software are presented and discussed. Likewise, existing DA methods for one- and multidimensional UT data, feature space augmentation, and GANs for augmentation are presented and discussed. The paper closes with an in-detail discussion of the advantages and limitations of existing methods for both synthetic UT training data generation and DA of UT data to aid the decision-making of the reader for the application to specific test cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱建强完成签到,获得积分10
刚刚
顺顺黎黎发布了新的文献求助10
1秒前
专一的从波完成签到 ,获得积分10
1秒前
1秒前
ccc发布了新的文献求助10
2秒前
2秒前
jilongwang完成签到,获得积分10
3秒前
12345完成签到 ,获得积分10
3秒前
4秒前
5秒前
心台完成签到,获得积分10
6秒前
思源应助乐观的鞋垫采纳,获得10
6秒前
小马甲应助爱吃冬瓜采纳,获得10
7秒前
自然的亦巧完成签到,获得积分10
7秒前
冷酷的戎完成签到 ,获得积分20
8秒前
SciGPT应助郝晨晰采纳,获得10
8秒前
虚心的函完成签到,获得积分10
8秒前
9秒前
qiuyu完成签到,获得积分10
9秒前
的呀呀发布了新的文献求助10
9秒前
10秒前
大模型应助芋圆采纳,获得10
10秒前
jagger完成签到,获得积分10
10秒前
zxl完成签到,获得积分10
11秒前
11秒前
炸鸡发布了新的文献求助10
12秒前
充电宝应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
Hello应助科研通管家采纳,获得10
13秒前
chill1249完成签到,获得积分10
14秒前
yznfly应助心台采纳,获得50
14秒前
15秒前
cnm发布了新的文献求助10
16秒前
17秒前
云飞扬应助刘沛沛采纳,获得10
19秒前
爱喝饮料的淼淼完成签到,获得积分10
20秒前
20秒前
吃猫的鱼发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947472
求助须知:如何正确求助?哪些是违规求助? 3492741
关于积分的说明 11066427
捐赠科研通 3223582
什么是DOI,文献DOI怎么找? 1781591
邀请新用户注册赠送积分活动 866393
科研通“疑难数据库(出版商)”最低求助积分说明 800332