Optimizing CuInSe2 Solar Cells with Kesterite-Based Upper Absorber and Back Surface Field Layers for Enhanced Efficiency: A Numerical Study

锌黄锡矿 领域(数学) 曲面(拓扑) 材料科学 太阳能电池 光学 光电子学 捷克先令 物理 几何学 数学 纯数学
作者
Izzeddine Belkacem,Souhila Bensmaine,Mousaab Belarbi,Chams El Hayat Merzouk
出处
期刊:Semiconductor Science and Technology [IOP Publishing]
卷期号:39 (11): 115005-115005 被引量:1
标识
DOI:10.1088/1361-6641/ad7b6c
摘要

Abstract This study explores the performance enhancement of an innovative multi-layer solar cell structure using the SCAPS-1D (Solar Cell Capacitance Simulator in One Dimension) software. We aim to improve the efficiency of a solar cell structure comprising ZnO/ZnSe/CZTSe/ CuInSe 2 /CZTSSe/Mo by incorporating CZTSe as the upper absorber layer, CuInSe 2 as the main absorber layer, and CZTSSe as a back surface field layer. Initially, we compare the performance of three different configurations by analyzing their J–V characteristics. For the best performing structure, we further examine the external quantum efficiency spectrum. We then evaluate various window (ZnO, ZnMgO, SnO 2 , Zn 2 SnO 4 ) and buffer (ZnSe, ZrS 2 , SnS 2 , In 2 S 3 ) materials, identifying ZnO and ZrS 2 as the most effective for achieving high current density and efficiency. Through detailed simulations, we determine the optimal thicknesses for CZTSSe (0.2 µ m), CZTSe (0.4 µ m), and CuInSe 2 (3.2 µ m). Additionally, by optimizing the acceptor density to 10 20 cm −3 , we significantly enhance the performance of both CZTSe and CZTSSe layers. Temperature management is shown to be crucial, with the highest efficiency observed at 300 K. As a result of these optimizations, the solar cell structure achieves a remarkable efficiency of 35.38%. Furthermore, we compare our results with existing literature to highlight the advancements made in this study. These findings underscore the importance of material selection and structural optimization in developing high-efficiency solar cells and provide a framework for future advancements in photovoltaic technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘤嘤怪完成签到,获得积分10
刚刚
刚刚
葡萄成熟完成签到,获得积分10
刚刚
嘒彼小星完成签到 ,获得积分10
1秒前
1秒前
Joy应助活泼灵枫采纳,获得10
1秒前
1秒前
JYX发布了新的文献求助10
1秒前
科目三应助日出时采纳,获得10
1秒前
小蘑菇应助虚幻心锁采纳,获得10
2秒前
pluto应助鱼鱼鱼采纳,获得10
2秒前
3秒前
Wendy完成签到,获得积分10
3秒前
翠花儿应助天天采纳,获得10
3秒前
小南完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
ffffff发布了新的文献求助10
6秒前
7秒前
7秒前
123完成签到,获得积分10
7秒前
武雨珍发布了新的文献求助10
7秒前
zzmmlll完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
亲爱的融发布了新的文献求助10
10秒前
10秒前
realmoon发布了新的文献求助10
11秒前
weixiaosi发布了新的文献求助10
11秒前
11秒前
猫九发布了新的文献求助10
11秒前
leftarrow完成签到,获得积分10
11秒前
11秒前
小马甲应助简单紫寒采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238921
求助须知:如何正确求助?哪些是违规求助? 3772675
关于积分的说明 11847956
捐赠科研通 3428534
什么是DOI,文献DOI怎么找? 1881611
邀请新用户注册赠送积分活动 933811
科研通“疑难数据库(出版商)”最低求助积分说明 840575