Robust motion planning for mobile robots under attacks against obstacle localization

障碍物 运动规划 移动机器人 计算机科学 人工智能 运动(物理) 机器人 计算机视觉 地理 考古
作者
Fenghua Wu,Wenbing Tang,Yuan Zhou,Shang‐Wei Lin,Zuohua Ding,Yang Liu
出处
期刊:Robotica [Cambridge University Press]
卷期号:: 1-20
标识
DOI:10.1017/s0263574724001115
摘要

Abstract Thanks to its real-time computation efficiency, deep reinforcement learning (DRL) has been widely applied in motion planning for mobile robots. In DRL-based methods, a DRL model computes an action for a robot based on the states of its surrounding obstacles, including other robots that may communicate with it. These methods always assume that the environment is attack-free and the obtained obstacles’ states are reliable. However, in the real world, a robot may suffer from obstacle localization attacks (OLAs), such as sensor attacks, communication attacks, and remote-control attacks, which cause the robot to retrieve inaccurate positions of the surrounding obstacles. In this paper, we propose a robust motion planning method ObsGAN-DRL , integrating a generative adversarial network (GAN) into DRL models to mitigate OLAs in the environment. First, ObsGAN-DRL learns a generator based on the GAN model to compute the approximation of obstacles’ accurate positions in benign and attack scenarios. Therefore, no detectors are required for ObsGAN-DRL . Second, by using the approximation positions of the surrounding obstacles, ObsGAN-DRL can leverage the state-of-the-art DRL methods to compute collision-free motion commands (e.g., velocity) efficiently. Comprehensive experiments show that ObsGAN-DRL can mitigate OLAs effectively and guarantee safety. We also demonstrate the generalization of ObsGAN-DRL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
稻草人完成签到,获得积分10
3秒前
宁宁宁完成签到,获得积分10
3秒前
3秒前
4秒前
CodeCraft应助daihq3采纳,获得10
4秒前
4秒前
nini发布了新的文献求助10
5秒前
邓文静完成签到,获得积分10
5秒前
彩色诗云完成签到 ,获得积分10
5秒前
无花果应助小杭76采纳,获得10
5秒前
宁宁宁发布了新的文献求助10
6秒前
没有答案发布了新的文献求助10
6秒前
魔幻大叔发布了新的文献求助10
7秒前
Wml发布了新的文献求助10
7秒前
汉堡包应助勤劳的飞飞采纳,获得10
7秒前
学渣完成签到,获得积分10
8秒前
8秒前
8秒前
Hilda007应助潇潇雨歇采纳,获得10
8秒前
csy完成签到,获得积分10
9秒前
归尘应助平常的擎宇采纳,获得20
9秒前
852应助rong采纳,获得30
10秒前
10秒前
慕青应助苗条的荧荧采纳,获得10
10秒前
10秒前
ccc发布了新的文献求助10
11秒前
充电宝应助墨菲特采纳,获得10
11秒前
我是老大应助水月中辉采纳,获得10
11秒前
Jasper应助炙热秋翠采纳,获得10
13秒前
13秒前
CPUPPer发布了新的文献求助10
14秒前
生动烙完成签到,获得积分10
15秒前
芝士大王完成签到 ,获得积分10
16秒前
16秒前
KneeYu发布了新的文献求助10
16秒前
如约而至完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5059034
求助须知:如何正确求助?哪些是违规求助? 4283912
关于积分的说明 13349986
捐赠科研通 4101331
什么是DOI,文献DOI怎么找? 2245425
邀请新用户注册赠送积分活动 1251203
关于科研通互助平台的介绍 1181858