A hematology-based clock derived from the Study of Longitudinal Aging in Mice to estimate biological age

血液学 内科学 生物钟 生物年龄 老年学 医学 生物 肿瘤科 昼夜节律
作者
Jorge Martínez-Romero,María Emilia Fernández,Michel Bernier,Nathan L. Price,William H. Mueller,Julián Candia,Simonetta Camandola,Osorio Meirelles,Yi‐Han Hu,Chi Kong Li,Nigus Gebremedhin Asefa,Andrew Deighan,Camila Vieira Ligo Teixeira,Dushani L. Palliyaguru,Carlos Serrano,Nicolas Escobar-Velasquez,Stephanie Dickinson,Eric J. Shiroma,Luigi Ferrucci,Gary A. Churchill
出处
期刊:Nature Aging
标识
DOI:10.1038/s43587-024-00728-7
摘要

Biological clocks and other molecular biomarkers of aging are difficult to implement widely in a clinical setting. In this study, we used routinely collected hematological markers to develop an aging clock to predict blood age and determine whether the difference between predicted age and chronologic age (aging gap) is associated with advanced aging in mice. Data from 2,562 mice of both sexes and three strains were drawn from two longitudinal studies of aging. Eight hematological variables and two metabolic indices were collected longitudinally (12,010 observations). Blood age was predicted using a deep neural network. Blood age was significantly correlated with chronological age, and aging gap was positively associated with mortality risk and frailty. Platelets were identified as the strongest age predictor by the deep neural network. An aging clock based on routinely collected blood measures has the potential to provide a practical clinical tool to better understand individual variability in the aging process. The authors used deep learning to derive a biological clock based on routine blood markers in mice that distinguishes slow-aging from fast-aging animals. Drawing on data from the NIH Study of Longitudinal Aging in Mice and a study of aging at The Jackson Laboratory, this clock reveals that platelets are key in predicting biological age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助kyJYbs采纳,获得10
2秒前
xiaofeng发布了新的文献求助10
2秒前
3秒前
科研通AI2S应助Syne_采纳,获得10
6秒前
6秒前
在水一方应助害羞便当采纳,获得10
7秒前
西门子云发布了新的文献求助10
7秒前
8秒前
科目三应助韩hqf采纳,获得10
8秒前
9秒前
10秒前
10秒前
sunshine发布了新的文献求助10
11秒前
炙热觅松完成签到,获得积分10
12秒前
12秒前
13秒前
赘婿应助笑点低的以亦采纳,获得10
13秒前
heheha发布了新的文献求助10
14秒前
展七发布了新的文献求助10
16秒前
17秒前
bkagyin应助nylon采纳,获得10
17秒前
20秒前
20秒前
rye227应助Nancy采纳,获得30
20秒前
23秒前
23秒前
殷超完成签到,获得积分0
24秒前
机灵白桃发布了新的文献求助10
26秒前
韩hqf发布了新的文献求助10
26秒前
27秒前
万能图书馆应助柔之采纳,获得10
27秒前
LELE完成签到,获得积分20
29秒前
zpl发布了新的文献求助10
29秒前
可爱的函函应助123采纳,获得10
29秒前
话哈哈发布了新的文献求助10
30秒前
lixiang完成签到,获得积分10
31秒前
123123发布了新的文献求助10
31秒前
充电宝应助无情的麦片采纳,获得10
32秒前
wdd完成签到 ,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366