Poly(ionic liquid)s: A Promising Matrix for Thermal Interface Materials

材料科学 离子液体 热稳定性 散热膏 硅酮 化学工程 纳米技术 相容性(地球化学) 热导率 复合材料 生物化学 工程类 催化作用 化学
作者
Jianhui Zeng,Ting Liang,Baohao Yang,Taoying Rao,Meng Han,Yimin Yao,Jianbin Xu,Liejun Li,Rong Sun
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (34): 45563-45576
标识
DOI:10.1021/acsami.4c09914
摘要

The swift progression of high-density chiplet packaging, propelled by the artificial intelligence revolution, has precipitated a critical need for high-performance chip-scale thermal interface materials (TIMs). The elevated thermal resistance, limited interfacial adhesion, and mechanical flexibility intrinsic to silicone systems present a substantial challenge in meeting reliability standards amidst chip warpage. This particular matter underscores a significant performance bottleneck within existing high-end TIMs. In this study, we present poly(ionic liquid)s (PILs) as an innovative matrix for TIMs. Our findings highlight the unique properties of PILs, showcasing a low elastic modulus (60 kPa), exceptional flexibility and stretchability (>3800%), high adhesion to diverse substrates (up to 4.10 MPa), favorable filler compatibility, remarkable thermal stability, and prompt self-healing capabilities coupled with recyclability. The collective findings suggest that the PIL serves as an ideal matrix for heat transfer. As a proof of concept, PIL blended with liquid metal was straightforwardly combined to produce a TIM, exhibiting exceptional performance within practical encapsulated structures. The PIL-based TIM demonstrates substantial elongation at break (>350%), coupled with sustained high adhesion strength (up to 1.70 MPa), and exhibits favorable thermal conductivity in package testing. This study presents an innovative TIM matrix with the potential to enhance existing TIM systems, delivering significant performance benefits compared to silicones. Besides elucidating their multifaceted characteristics, this study forecasts an expanded range of applications for PILs, along with laying the groundwork for advancing next-generation TIMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jc完成签到 ,获得积分10
刚刚
大个应助简单山水采纳,获得10
1秒前
Fonxi完成签到,获得积分20
1秒前
Tomma完成签到,获得积分10
1秒前
高高尔蓉发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
跳跃的不二完成签到 ,获得积分10
3秒前
比大家发布了新的文献求助10
4秒前
pluto应助发论文采纳,获得60
4秒前
7秒前
李健的小迷弟应助008采纳,获得10
7秒前
8秒前
FashionBoy应助活力的尔蓉采纳,获得10
8秒前
yogurtli发布了新的文献求助10
9秒前
10秒前
今后应助发论文采纳,获得10
13秒前
学术垃圾完成签到,获得积分10
14秒前
杨一发布了新的文献求助10
14秒前
17秒前
小白完成签到 ,获得积分10
19秒前
Zmy完成签到,获得积分10
20秒前
桐桐应助hys采纳,获得10
21秒前
研友_VZG7GZ应助顽皮的雪鸮采纳,获得10
22秒前
blacksmith0发布了新的文献求助10
22秒前
含蓄飞槐完成签到 ,获得积分10
23秒前
24秒前
tokomon关注了科研通微信公众号
25秒前
26秒前
小海完成签到,获得积分10
26秒前
26秒前
26秒前
森气发布了新的文献求助10
29秒前
008发布了新的文献求助10
29秒前
30秒前
caohuijun发布了新的文献求助10
31秒前
krk发布了新的文献求助10
32秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778867
求助须知:如何正确求助?哪些是违规求助? 3324387
关于积分的说明 10218251
捐赠科研通 3039453
什么是DOI,文献DOI怎么找? 1668175
邀请新用户注册赠送积分活动 798554
科研通“疑难数据库(出版商)”最低求助积分说明 758440