化学
药物发现
药品
肽
数量结构-活动关系
药物开发
体内
药理学
小分子
艾塞那肽
计算生物学
组合化学
糖尿病
生物化学
立体化学
2型糖尿病
内分泌学
生物
医学
生物技术
作者
Jens Nielsen,Claudia U. Hjørringgaard,Mads Mørup Nygaard,Anita Wester,Lisbeth Elster,Trine Porsgaard,Randi Bonke Mikkelsen,Silas Anselm Rasmussen,Andreas Nygaard Madsen,Morten Schlein,Niels Vrang,Kristoffer T. G. Rigbolt,Louise S. Dalbøge
标识
DOI:10.1021/acs.jmedchem.4c00417
摘要
Peptide-based drug discovery has surged with the development of peptide hormone-derived analogs for the treatment of diabetes and obesity. Machine learning (ML)-enabled quantitative structure–activity relationship (QSAR) approaches have shown great promise in small molecule drug discovery but have been less successful in peptide drug discovery due to limited data availability. We have developed a peptide drug discovery platform called streaMLine, enabling rigorous design, synthesis, screening, and ML-driven analysis of large peptide libraries. Using streaMLine, this study systematically explored secretin as a peptide backbone to generate potent, selective, and long-acting GLP-1R agonists with improved physicochemical properties. We synthesized and screened a total of 2688 peptides and applied ML-guided QSAR to identify multiple options for designing stable and potent GLP-1R agonists. One candidate, GUB021794, was profiled in vivo (S.C., 10 nmol/kg QD) and showed potent body weight loss in diet-induced obese mice and a half-life compatible with once-weekly dosing.
科研通智能强力驱动
Strongly Powered by AbleSci AI