Deep learning radiomics based on multimodal imaging for distinguishing benign and malignant breast tumours

无线电技术 乳房成像 磁共振成像 特征(语言学) 随机森林 医学 深度学习 双雷达 集成学习 人工智能 放射科 图像融合 融合 机器学习 计算机科学 乳腺癌 乳腺摄影术 内科学 癌症 图像(数学) 哲学 语言学
作者
Guoxiu Lu,Ronghui Tian,Wei Yang,Ruibo Liu,Dongmei Liu,Zijie Xiang,Guoxu Zhang
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11 被引量:6
标识
DOI:10.3389/fmed.2024.1402967
摘要

Objectives This study aimed to develop a deep learning radiomic model using multimodal imaging to differentiate benign and malignant breast tumours. Methods Multimodality imaging data, including ultrasonography (US), mammography (MG), and magnetic resonance imaging (MRI), from 322 patients (112 with benign breast tumours and 210 with malignant breast tumours) with histopathologically confirmed breast tumours were retrospectively collected between December 2018 and May 2023. Based on multimodal imaging, the experiment was divided into three parts: traditional radiomics, deep learning radiomics, and feature fusion. We tested the performance of seven classifiers, namely, SVM, KNN, random forest, extra trees, XGBoost, LightGBM, and LR, on different feature models. Through feature fusion using ensemble and stacking strategies, we obtained the optimal classification model for benign and malignant breast tumours. Results In terms of traditional radiomics, the ensemble fusion strategy achieved the highest accuracy, AUC, and specificity, with values of 0.892, 0.942 [0.886–0.996], and 0.956 [0.873–1.000], respectively. The early fusion strategy with US, MG, and MRI achieved the highest sensitivity of 0.952 [0.887–1.000]. In terms of deep learning radiomics, the stacking fusion strategy achieved the highest accuracy, AUC, and sensitivity, with values of 0.937, 0.947 [0.887–1.000], and 1.000 [0.999–1.000], respectively. The early fusion strategies of US+MRI and US+MG achieved the highest specificity of 0.954 [0.867–1.000]. In terms of feature fusion, the ensemble and stacking approaches of the late fusion strategy achieved the highest accuracy of 0.968. In addition, stacking achieved the highest AUC and specificity, which were 0.997 [0.990–1.000] and 1.000 [0.999–1.000], respectively. The traditional radiomic and depth features of US+MG + MR achieved the highest sensitivity of 1.000 [0.999–1.000] under the early fusion strategy. Conclusion This study demonstrated the potential of integrating deep learning and radiomic features with multimodal images. As a single modality, MRI based on radiomic features achieved greater accuracy than US or MG. The US and MG models achieved higher accuracy with transfer learning than the single-mode or radiomic models. The traditional radiomic and depth features of US+MG + MR achieved the highest sensitivity under the early fusion strategy, showed higher diagnostic performance, and provided more valuable information for differentiation between benign and malignant breast tumours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木南完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
8秒前
笑点低的铁身完成签到 ,获得积分10
15秒前
1111完成签到,获得积分10
16秒前
机灵的衬衫完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
浮游应助1111采纳,获得10
22秒前
ramsey33完成签到 ,获得积分10
25秒前
我独舞完成签到 ,获得积分10
42秒前
浮游应助1111采纳,获得10
46秒前
量子星尘发布了新的文献求助10
49秒前
wang1030完成签到 ,获得积分10
50秒前
Hindiii完成签到,获得积分10
51秒前
April完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
一天完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
南浔完成签到 ,获得积分10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
carl完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
送不送书7完成签到 ,获得积分10
1分钟前
今后应助敏敏9813采纳,获得10
2分钟前
HY完成签到 ,获得积分10
2分钟前
丑小鸭完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
随心所欲发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
又又完成签到,获得积分10
2分钟前
笨笨忘幽完成签到,获得积分0
2分钟前
子铭完成签到,获得积分10
2分钟前
CLTTT完成签到,获得积分0
2分钟前
兴奋的天蓉完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
缥缈的觅风完成签到 ,获得积分10
2分钟前
lhn完成签到 ,获得积分10
2分钟前
lyj完成签到 ,获得积分0
2分钟前
一叶舟完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422767
求助须知:如何正确求助?哪些是违规求助? 4537616
关于积分的说明 14157849
捐赠科研通 4454389
什么是DOI,文献DOI怎么找? 2443303
邀请新用户注册赠送积分活动 1434582
关于科研通互助平台的介绍 1411758