Deep learning radiomics based on multimodal imaging for distinguishing benign and malignant breast tumours

无线电技术 乳房成像 医学 深度学习 人工智能 放射科 乳腺肿瘤 模式治疗法 计算机科学 乳腺癌 乳腺摄影术 内科学 癌症
作者
Guoxiu Lu,Ronghui Tian,Wei Yang,Ruibo Liu,Dongmei Liu,Zhu Xiang,Guoxu Zhang
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fmed.2024.1402967
摘要

Objectives This study aimed to develop a deep learning radiomic model using multimodal imaging to differentiate benign and malignant breast tumours. Methods Multimodality imaging data, including ultrasonography (US), mammography (MG), and magnetic resonance imaging (MRI), from 322 patients (112 with benign breast tumours and 210 with malignant breast tumours) with histopathologically confirmed breast tumours were retrospectively collected between December 2018 and May 2023. Based on multimodal imaging, the experiment was divided into three parts: traditional radiomics, deep learning radiomics, and feature fusion. We tested the performance of seven classifiers, namely, SVM, KNN, random forest, extra trees, XGBoost, LightGBM, and LR, on different feature models. Through feature fusion using ensemble and stacking strategies, we obtained the optimal classification model for benign and malignant breast tumours. Results In terms of traditional radiomics, the ensemble fusion strategy achieved the highest accuracy, AUC, and specificity, with values of 0.892, 0.942 [0.886–0.996], and 0.956 [0.873–1.000], respectively. The early fusion strategy with US, MG, and MRI achieved the highest sensitivity of 0.952 [0.887–1.000]. In terms of deep learning radiomics, the stacking fusion strategy achieved the highest accuracy, AUC, and sensitivity, with values of 0.937, 0.947 [0.887–1.000], and 1.000 [0.999–1.000], respectively. The early fusion strategies of US+MRI and US+MG achieved the highest specificity of 0.954 [0.867–1.000]. In terms of feature fusion, the ensemble and stacking approaches of the late fusion strategy achieved the highest accuracy of 0.968. In addition, stacking achieved the highest AUC and specificity, which were 0.997 [0.990–1.000] and 1.000 [0.999–1.000], respectively. The traditional radiomic and depth features of US+MG + MR achieved the highest sensitivity of 1.000 [0.999–1.000] under the early fusion strategy. Conclusion This study demonstrated the potential of integrating deep learning and radiomic features with multimodal images. As a single modality, MRI based on radiomic features achieved greater accuracy than US or MG. The US and MG models achieved higher accuracy with transfer learning than the single-mode or radiomic models. The traditional radiomic and depth features of US+MG + MR achieved the highest sensitivity under the early fusion strategy, showed higher diagnostic performance, and provided more valuable information for differentiation between benign and malignant breast tumours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助cacy_zhou采纳,获得10
刚刚
Orange应助老实的栾采纳,获得10
刚刚
刚刚
Marilinta完成签到,获得积分10
4秒前
6秒前
7秒前
晓布衣完成签到,获得积分10
8秒前
好好好完成签到 ,获得积分10
9秒前
10秒前
老实的栾发布了新的文献求助10
12秒前
54zxy完成签到,获得积分10
12秒前
yaosichao完成签到,获得积分10
13秒前
迅速的幻雪完成签到 ,获得积分10
15秒前
仅此而已完成签到,获得积分10
15秒前
15秒前
15秒前
17秒前
嘴角上扬完成签到 ,获得积分10
19秒前
21秒前
听蝉完成签到,获得积分10
21秒前
小马甲应助无奈的如彤采纳,获得10
22秒前
罗龙生完成签到,获得积分10
22秒前
zzz发布了新的文献求助10
23秒前
feier发布了新的文献求助10
23秒前
EasyNan应助Yucsh书慧123采纳,获得10
24秒前
快乐的凌柏完成签到,获得积分10
24秒前
叡叡完成签到,获得积分10
24秒前
25秒前
西鱼发布了新的文献求助10
26秒前
26秒前
嗯哼完成签到 ,获得积分10
26秒前
28秒前
Hello应助大小多少采纳,获得10
28秒前
29秒前
zhanghe发布了新的文献求助20
30秒前
30秒前
无奈的如彤完成签到,获得积分20
31秒前
李健的小迷弟应助dyh0521采纳,获得10
33秒前
轻松妙柏发布了新的文献求助10
34秒前
西鱼完成签到,获得积分10
36秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848763
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568161
捐赠科研通 3112182
什么是DOI,文献DOI怎么找? 1715103
邀请新用户注册赠送积分活动 825581
科研通“疑难数据库(出版商)”最低求助积分说明 775663