The influencing factors and mechanisms for urban flood resilience in China: From the perspective of social-economic-natural complex ecosystem

大洪水 城市化 背景(考古学) 中国 弹性(材料科学) 环境资源管理 心理弹性 环境规划 城市复原力 城市规划 地理 环境科学 生态学 经济增长 心理学 经济 热力学 生物 物理 考古 心理治疗师
作者
Shi‐Yao Zhu,Dezhi Li,Haibo Feng,Na Zhang
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:147: 109959-109959 被引量:77
标识
DOI:10.1016/j.ecolind.2023.109959
摘要

Urban flood is one of the most frequent and deadly natural disasters in the world, seriously affecting urban sustainability and people's well-being in China. As the largest developing country in the world, China urgently needs to improve its urban flood resilience. Previous studies related to urban flood resilience are mostly focused on its assessment method and simulation. However, few studies directly aim to reveal the influencing factors of urban flood resilience and their inner relationships. In order to make a significant contribution to the long-term improvement of urban flood resilience in the context of global climate change and urbanization, it is crucial to explore the influencing mechanisms of urban flood resilience. This study aims to identify key influencing factors and their interactions on urban flood resilience in China. To this end, a conceptual framework based on Pressure-State-Response model and Social-Economic-Natural Complex Ecosystem theory (PSR-SENCE model) are established and 24 factors are identified within three dimensions. The relationships between the factors are tested using a fuzzy-DEMATEL method. The results reveal that factors in pressure and response dimensions have a greater impact on the whole system, while the factors in the state dimension are more influenced by the other two dimensions. The results identify 14 critical factors, with four detailed influence paths discussed among the different dimensions. Accordingly, the implications for improving urban flood resilience are discussed within the context of the key influencing paths. The study provides a theoretical basis and approach to directly explore how the factors influencing urban flood resilience and proposes specific impact paths and improvement implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助liz采纳,获得10
2秒前
2秒前
noa发布了新的文献求助10
2秒前
辛子发布了新的文献求助10
3秒前
tt发布了新的文献求助10
3秒前
合适的灵枫完成签到,获得积分10
3秒前
3秒前
3秒前
xixi完成签到,获得积分10
4秒前
4秒前
4秒前
cherish_7宝完成签到,获得积分10
5秒前
5秒前
杭亦寒关注了科研通微信公众号
5秒前
君衡完成签到 ,获得积分10
5秒前
5秒前
songxu223发布了新的文献求助10
6秒前
huohuo完成签到,获得积分10
6秒前
白熊完成签到,获得积分20
6秒前
7秒前
7秒前
孤狼完成签到,获得积分10
7秒前
C5b6789n完成签到,获得积分10
7秒前
wzy完成签到,获得积分10
7秒前
小蘑菇应助二指弹采纳,获得10
8秒前
柏林发布了新的文献求助10
8秒前
吃瓜米吃瓜米完成签到 ,获得积分10
8秒前
bliyaa发布了新的文献求助10
8秒前
xixi发布了新的文献求助10
9秒前
肖肖发布了新的文献求助10
10秒前
李健应助FST采纳,获得10
10秒前
乖乖发布了新的文献求助30
10秒前
10秒前
10秒前
zho发布了新的文献求助10
11秒前
C5b6789n发布了新的文献求助10
11秒前
11秒前
矮小的茹妖完成签到 ,获得积分10
11秒前
12秒前
李胜给李胜的求助进行了留言
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054