期刊:Chinese Physics B [IOP Publishing] 日期:2025-09-15卷期号:34 (11): 117106-117106
标识
DOI:10.1088/1674-1056/ae0681
摘要
Abstract Density-functional-theory (DFT) simulations with the Vienna Ab initio Simulation Package (VASP) are indispensable in computational materials science but often require extensive manual setup, monitoring, and postprocessing. Here, we introduce VASPilot, an open-source platform that fully automates VASP workflows via a multi-agent architecture built on the CrewAI framework and a standardized model context protocol (MCP). VASPilot’s agent suite handles every stage of a VASP study from retrieving crystal structures and generating input files to submitting Slurm jobs, parsing error messages, and dynamically adjusting parameters for seamless restarts. A lightweight Quart-based web interface provides intuitive task submission, real-time progress tracking, and drill-down access to execution logs, structure visualizations, and plots. We validated VASPilot on both routine and advanced benchmarks: automated band-structure and density-of-states calculations (including on-the-fly symmetry corrections), plane-wave cutoff convergence tests, lattice-constant optimizations with various van der Waals corrections, and cross-material band-gap comparisons for transition-metal dichalcogenides. In all cases, VASPilot completed the missions reliably and without manual intervention. Moreover, its modular design allows easy extension to other DFT codes simply by deploying the appropriate MCP server. By offloading technical overhead, VASPilot enables researchers to focus on scientific discovery and accelerates high-throughput computational materials research.