Use of machine learning to shorten observation-based screening and diagnosis of autism

自闭症 孤独症诊断观察量表 自闭症谱系障碍 分类器(UML) 心理学 数据收集 人工智能 机器学习 临床心理学 计算机科学 发展心理学 统计 数学
作者
Dennis P. Wall,Jack A. Kosmicki,Todd F. DeLuca,Elizabeth Harstad,Vincent A. Fusaro
出处
期刊:Translational Psychiatry [Springer Nature]
卷期号:2 (4): e100-e100 被引量:250
标识
DOI:10.1038/tp.2012.10
摘要

The Autism Diagnostic Observation Schedule-Generic (ADOS) is one of the most widely used instruments for behavioral evaluation of autism spectrum disorders. It is composed of four modules, each tailored for a specific group of individuals based on their language and developmental level. On average, a module takes between 30 and 60 min to deliver. We used a series of machine-learning algorithms to study the complete set of scores from Module 1 of the ADOS available at the Autism Genetic Resource Exchange (AGRE) for 612 individuals with a classification of autism and 15 non-spectrum individuals from both AGRE and the Boston Autism Consortium (AC). Our analysis indicated that 8 of the 29 items contained in Module 1 of the ADOS were sufficient to classify autism with 100% accuracy. We further validated the accuracy of this eight-item classifier against complete sets of scores from two independent sources, a collection of 110 individuals with autism from AC and a collection of 336 individuals with autism from the Simons Foundation. In both cases, our classifier performed with nearly 100% sensitivity, correctly classifying all but two of the individuals from these two resources with a diagnosis of autism, and with 94% specificity on a collection of observed and simulated non-spectrum controls. The classifier contained several elements found in the ADOS algorithm, demonstrating high test validity, and also resulted in a quantitative score that measures classification confidence and extremeness of the phenotype. With incidence rates rising, the ability to classify autism effectively and quickly requires careful design of assessment and diagnostic tools. Given the brevity, accuracy and quantitative nature of the classifier, results from this study may prove valuable in the development of mobile tools for preliminary evaluation and clinical prioritization-in particular those focused on assessment of short home videos of children--that speed the pace of initial evaluation and broaden the reach to a significantly larger percentage of the population at risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助ljq0814采纳,获得50
刚刚
洁净雅容发布了新的文献求助10
刚刚
webof发布了新的文献求助10
1秒前
xiaolifeidao发布了新的文献求助10
1秒前
脑洞疼应助JY采纳,获得10
1秒前
枫叶应助忧郁的凌波采纳,获得10
1秒前
大白发布了新的文献求助30
2秒前
2秒前
3秒前
颜夕完成签到,获得积分10
4秒前
小王加油啊啊啊完成签到,获得积分10
4秒前
Ssmall完成签到,获得积分10
4秒前
yyy完成签到,获得积分10
4秒前
北梦完成签到,获得积分10
5秒前
七七发布了新的文献求助10
5秒前
123456发布了新的文献求助10
5秒前
小点点发布了新的文献求助20
6秒前
糜轩完成签到,获得积分10
6秒前
6秒前
山猫大王完成签到 ,获得积分10
7秒前
柏儿发布了新的文献求助10
8秒前
916应助zcx采纳,获得10
9秒前
916应助zcx采纳,获得10
9秒前
111111发布了新的文献求助10
11秒前
11秒前
喜欢吃香菜完成签到,获得积分10
12秒前
深情安青应助小美采纳,获得10
12秒前
自由天完成签到,获得积分20
13秒前
14秒前
Jean_Zhao完成签到,获得积分10
14秒前
14秒前
Ava应助乖就采纳,获得10
15秒前
webof完成签到,获得积分10
15秒前
月倚樱落时完成签到,获得积分10
15秒前
16秒前
成就白竹发布了新的文献求助10
17秒前
18秒前
JY发布了新的文献求助10
18秒前
everyone_woo发布了新的文献求助10
19秒前
大气依萱发布了新的文献求助20
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 350
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3929572
求助须知:如何正确求助?哪些是违规求助? 3474655
关于积分的说明 10983272
捐赠科研通 3204686
什么是DOI,文献DOI怎么找? 1770791
邀请新用户注册赠送积分活动 858779
科研通“疑难数据库(出版商)”最低求助积分说明 796745