Statistical Evaluation of Prognostic versus Diagnostic Models: Beyond the ROC Curve

接收机工作特性 统计的 校准 统计 预测建模 弗雷明翰风险评分 曲线下面积 风险评估 医学 疾病 计量经济学 内科学 数学 计算机科学 计算机安全
作者
Nancy R. Cook
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:54 (1): 17-23 被引量:672
标识
DOI:10.1373/clinchem.2007.096529
摘要

Abstract Background: Diagnostic and prognostic or predictive models serve different purposes. Whereas diagnostic models are usually used for classification, prognostic models incorporate the dimension of time, adding a stochastic element. Content: The ROC curve is typically used to evaluate clinical utility for both diagnostic and prognostic models. This curve assesses how well a test or model discriminates, or separates individuals into two classes, such as diseased and nondiseased. A strong risk predictor, such as lipids for cardiovascular disease, may have limited impact on the area under the curve, called the AUC or c-statistic, even if it alters predicted values. Calibration, measuring whether predicted probabilities agree with observed proportions, is another component of model accuracy important to assess. Reclassification can directly compare the clinical impact of two models by determining how many individuals would be reclassified into clinically relevant risk strata. For example, adding high-sensitivity C-reactive protein and family history to prediction models for cardiovascular disease using traditional risk factors moves approximately 30% of those at intermediate risk levels, such as 5%–10% or 10%–20% 10-year risk, into higher or lower risk categories, despite little change in the c-statistic. A calibration statistic can asses how well the new predicted values agree with those observed in the cross-classified data. Summary: Although it is useful for classification, evaluation of prognostic models should not rely solely on the ROC curve, but should assess both discrimination and calibration. Risk reclassification can aid in comparing the clinical impact of two models on risk for the individual, as well as the population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miao发布了新的文献求助10
刚刚
耳鼻喉不发言完成签到,获得积分10
刚刚
LIU完成签到 ,获得积分10
1秒前
1秒前
刘布丁发布了新的文献求助10
2秒前
爆米花应助xiaojiahuo采纳,获得10
4秒前
crystalese发布了新的文献求助10
5秒前
6秒前
6秒前
英俊的铭应助阔达的扬采纳,获得10
7秒前
lim发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
沈薇完成签到,获得积分20
11秒前
didiaonn发布了新的文献求助10
11秒前
12秒前
14秒前
Chen完成签到,获得积分10
15秒前
Jasper应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
大龙哥886应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
熊熊面包应助科研通管家采纳,获得10
17秒前
大龙哥886应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
18秒前
自觉翠安应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
18秒前
浮游应助科研通管家采纳,获得10
18秒前
丘比特应助linye采纳,获得10
18秒前
20秒前
lim完成签到,获得积分10
21秒前
Zhou应助孤独谷蕊采纳,获得10
22秒前
小葱头应助春子采纳,获得10
22秒前
英俊的铭应助Zilch采纳,获得10
23秒前
23秒前
美丽的凌蝶完成签到,获得积分10
23秒前
忧伤的尔白完成签到,获得积分10
23秒前
26秒前
qiuqiumao完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474151
求助须知:如何正确求助?哪些是违规求助? 4575997
关于积分的说明 14356041
捐赠科研通 4503822
什么是DOI,文献DOI怎么找? 2467785
邀请新用户注册赠送积分活动 1455585
关于科研通互助平台的介绍 1429599