电池(电)
差异进化
计算机科学
估计员
帕累托原理
差速器(机械装置)
数学优化
费希尔信息
进化算法
表征(材料科学)
算法
人工智能
机器学习
工程类
数学
功率(物理)
物理
航空航天工程
统计
纳米技术
量子力学
材料科学
作者
Joel C. Forman,Jeffrey L. Stein,Hosam K. Fathy
出处
期刊:American Control Conference
日期:2013-06-01
卷期号:: 867-874
被引量:32
标识
DOI:10.1109/acc.2013.6579945
摘要
Characterization is important for making models match reality and allowing for quick and accurate measurements of parameters. In this paper we present a method for designing dynamic battery experiments using an evolutionary algorithm that directly generates Pareto fronts via differential evolution. This optimization creates current trajectories for multiple objectives, namely, maximizing Fisher information gathered while minimizing battery damage. An estimator is used on simulated battery experiments to verify the improvements associated with these trajectories. This exercise illustrates the experimental trade-offs between gathering parameter information and causing battery degradation. The procedure in this paper is widely applicable as both the battery model and parameter's of interest can be substituted as needed.
科研通智能强力驱动
Strongly Powered by AbleSci AI