清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Validation of an Interpretable Conformal Predictor to Predict Sepsis Mortality Risk: Retrospective Cohort Study

医学 概化理论 内部有效性 败血症 接收机工作特性 外部有效性 可解释性 人口 重症监护医学 急诊医学 人工智能 计算机科学 内科学 统计 数学 环境卫生 病理
作者
Meicheng Yang,Hui Chen,Wenhan Hu,Massimo Mischi,Caifeng Shan,Jianqing Li,Xi Long,Chengyu Liu
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e50369-e50369 被引量:5
标识
DOI:10.2196/50369
摘要

Background Early and reliable identification of patients with sepsis who are at high risk of mortality is important to improve clinical outcomes. However, 3 major barriers to artificial intelligence (AI) models, including the lack of interpretability, the difficulty in generalizability, and the risk of automation bias, hinder the widespread adoption of AI models for use in clinical practice. Objective This study aimed to develop and validate (internally and externally) a conformal predictor of sepsis mortality risk in patients who are critically ill, leveraging AI-assisted prediction modeling. The proposed approach enables explaining the model output and assessing its confidence level. Methods We retrospectively extracted data on adult patients with sepsis from a database collected in a teaching hospital at Beth Israel Deaconess Medical Center for model training and internal validation. A large multicenter critical care database from the Philips eICU Research Institute was used for external validation. A total of 103 clinical features were extracted from the first day after admission. We developed an AI model using gradient-boosting machines to predict the mortality risk of sepsis and used Mondrian conformal prediction to estimate the prediction uncertainty. The Shapley additive explanation method was used to explain the model. Results A total of 16,746 (80%) patients from Beth Israel Deaconess Medical Center were used to train the model. When tested on the internal validation population of 4187 (20%) patients, the model achieved an area under the receiver operating characteristic curve of 0.858 (95% CI 0.845-0.871), which was reduced to 0.800 (95% CI 0.789-0.811) when externally validated on 10,362 patients from the Philips eICU database. At a specified confidence level of 90% for the internal validation cohort the percentage of error predictions (n=438) out of all predictions (n=4187) was 10.5%, with 1229 (29.4%) predictions requiring clinician review. In contrast, the AI model without conformal prediction made 1449 (34.6%) errors. When externally validated, more predictions (n=4004, 38.6%) were flagged for clinician review due to interdatabase heterogeneity. Nevertheless, the model still produced significantly lower error rates compared to the point predictions by AI (n=1221, 11.8% vs n=4540, 43.8%). The most important predictors identified in this predictive model were Acute Physiology Score III, age, urine output, vasopressors, and pulmonary infection. Clinically relevant risk factors contributing to a single patient were also examined to show how the risk arose. Conclusions By combining model explanation and conformal prediction, AI-based systems can be better translated into medical practice for clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yingzaifeixiang完成签到 ,获得积分10
4秒前
zijingsy完成签到 ,获得积分10
20秒前
蓝意完成签到,获得积分0
23秒前
27秒前
chichenglin完成签到 ,获得积分0
35秒前
152455完成签到 ,获得积分10
37秒前
hh发布了新的文献求助10
37秒前
39秒前
2580852qwe完成签到 ,获得积分10
44秒前
赵一完成签到 ,获得积分10
44秒前
稳重元菱发布了新的文献求助10
44秒前
浮游应助hh采纳,获得10
50秒前
鱼湘完成签到,获得积分10
51秒前
美丽的楼房完成签到 ,获得积分10
52秒前
Thunnus001完成签到 ,获得积分10
1分钟前
清爽指甲油完成签到,获得积分10
1分钟前
慕青应助稳重元菱采纳,获得10
1分钟前
naczx完成签到,获得积分0
1分钟前
科研狗完成签到 ,获得积分0
1分钟前
Tong完成签到,获得积分0
1分钟前
1分钟前
武雨寒完成签到,获得积分20
1分钟前
稳重元菱发布了新的文献求助10
1分钟前
1分钟前
Owen应助武雨寒采纳,获得10
2分钟前
深情牛排完成签到 ,获得积分10
2分钟前
嘻嘻哈哈完成签到 ,获得积分10
2分钟前
稳重元菱完成签到,获得积分10
2分钟前
2分钟前
mzhang2完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
许思真完成签到,获得积分10
3分钟前
小马甲应助许思真采纳,获得10
3分钟前
蛋卷完成签到 ,获得积分10
3分钟前
3分钟前
瘦瘦的枫叶完成签到 ,获得积分10
3分钟前
FengyaoWang完成签到,获得积分10
4分钟前
4分钟前
刘文思完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935628
求助须知:如何正确求助?哪些是违规求助? 4202905
关于积分的说明 13059033
捐赠科研通 3979009
什么是DOI,文献DOI怎么找? 2179684
邀请新用户注册赠送积分活动 1195702
关于科研通互助平台的介绍 1107514