Dynamic Spatial Focus for Efficient Compressed Video Action Recognition

计算机科学 光学(聚焦) 计算机视觉 人工智能 动作识别 模式识别(心理学) 计算机图形学(图像) 物理 光学 班级(哲学)
作者
Ziwei Zheng,Le Yang,Yulin Wang,Miao Zhang,Lijun He,Gao Huang,Fan Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 695-708 被引量:17
标识
DOI:10.1109/tcsvt.2023.3287201
摘要

Recent years have witnessed a growing interest in compressed video action recognition due to the rapid growth of online videos. It remarkably reduces the storage by replacing raw videos with sparsely sampled RGB frames and other compressed motion cues (motion vectors and residuals). However, existing compressed video action recognition methods face two main issues: First, the inefficiency caused by the usage of coarse-level information under full resolution, and second, the disturbing due to the noisy dynamics in motion vectors. To address the two issues, this paper proposes a dynamic spatial focus method for efficient compressed video action recognition (CoViFocus). Specifically, we first use a light-weighted two-stream architecture to localize the task-relevant patches for both the RGB frames and motion vectors. Then the selected patch pair will be processed by a high-capacity two-stream deep model for the final prediction. Such a patch selection strategy crops out the irrelevant motion noise in motion vectors, as well as reduces the spatial redundancy of the inputs, leading to the high efficiency of our method in the compressed domain. Moreover, we found that the motion vectors can help our method to address the possibly happened static-issue, which means that the focus patches get stuck at some regions related to static objects rather than target actions, which further improves our method. Extensive results on both the HMDB-51 and UCF-101 datasets demonstrate the effectiveness and efficiency of our method in compressed video action recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
666发布了新的文献求助30
刚刚
1秒前
七包辣条发布了新的文献求助10
1秒前
1秒前
1秒前
jou发布了新的文献求助10
2秒前
谦让芹菜发布了新的文献求助10
3秒前
Archie发布了新的文献求助10
3秒前
疯狂花生关注了科研通微信公众号
3秒前
3秒前
111发布了新的文献求助10
3秒前
斯文败类应助简默采纳,获得10
3秒前
4秒前
4秒前
6秒前
科研通AI5应助heli采纳,获得10
6秒前
彭于晏应助socroz采纳,获得10
7秒前
7秒前
7秒前
跳跃雨泽发布了新的文献求助10
8秒前
伯赏思山完成签到 ,获得积分10
8秒前
仔仔完成签到 ,获得积分10
8秒前
madcatalysis完成签到,获得积分10
8秒前
9秒前
9秒前
LL完成签到,获得积分10
9秒前
典雅问寒发布了新的文献求助10
9秒前
李健的小迷弟应助Denmark采纳,获得10
10秒前
10秒前
Mere Chen发布了新的文献求助10
10秒前
10秒前
11秒前
fluency发布了新的文献求助10
11秒前
11秒前
雪白鸿涛发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828607
求助须知:如何正确求助?哪些是违规求助? 3371080
关于积分的说明 10466123
捐赠科研通 3090923
什么是DOI,文献DOI怎么找? 1700600
邀请新用户注册赠送积分活动 817945
科研通“疑难数据库(出版商)”最低求助积分说明 770618