Energy-Efficient and QoS-Aware Data Transfer in Q-Learning-Based Small-World LPWANs

计算机科学 计算机网络 服务质量 学习迁移 人工智能
作者
Naga Srinivasarao Chilamkurthy,Niteesh Karna,Vamsidhar Vuddagiri,S. Tiwari,Anirban Ghosh,Linga Reddy Cenkeramaddi,Om Jee Pandey
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 22636-22649 被引量:5
标识
DOI:10.1109/jiot.2023.3304337
摘要

The widespread use of the Internet of Things (IoT) necessitates large-scale communication among smart IoT devices (IoDs) across a wide geographical area. However, due to the limited radio range and scalability issues of traditional wireless sensor networks, wide-area communication among IoDs is not feasible. As a solution, a low-power wide-area network (LPWAN) is emerging as one of the techniques that can provide long-range communication with minimal power consumption. Nevertheless, the direct data transmission approach will no longer be viable due to its short network lifetime. As such, multihop data routing strategies for LPWANs are proposed in the literature. However, multihop data transmission has several challenges, including increased data latency, energy imbalance, poor bandwidth utilization, and low data throughput. To address these challenges, we propose a novel method that uses the machine learning technique for an energy-efficient and Quality-of-Service (QoS)-aware data transfer based on a recent breakthrough in social networks known as small-world characteristics (SWC). The network having SWC (i.e., low average path length and high average clustering coefficient) uses long-range links to reduce the number of intermediate hops for data transmission. In particular, a $Q$ -learning framework is utilized for introducing optimal long-range links between the selected IoDs, resulting in the development of a small-world LPWAN (SW-LPWAN). Furthermore, the performance of the proposed method is computed in terms of energy efficiency and QoS. Moreover, the results are compared with existing data routing techniques, such as low-energy adaptive clustering hierarchy (LEACH), modified LEACH, conventional multihop, and direct data transmission. Specifically, the proposed method maintains 29% more alive nodes, 18% higher residual energy, and 22% higher data throughput compared to the second-best-performing method. As such, the obtained experimental results validate that the proposed method outperforms other existing methods in the context of energy consumption and QoS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶水清发布了新的文献求助10
1秒前
ff完成签到,获得积分10
1秒前
乐观期待完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助苹果猫咪采纳,获得30
3秒前
专注的荧发布了新的文献求助10
3秒前
3秒前
4秒前
科研混子完成签到,获得积分10
5秒前
充电宝应助艾李申采纳,获得10
5秒前
格纹发布了新的文献求助10
6秒前
6秒前
CAIJING发布了新的文献求助10
7秒前
撒德巴何猜想完成签到,获得积分10
9秒前
9秒前
xiaoli245发布了新的文献求助10
10秒前
11秒前
小材给小材的求助进行了留言
11秒前
步步完成签到,获得积分10
12秒前
张志远完成签到,获得积分20
12秒前
科目三应助大巨奆硕采纳,获得10
13秒前
传奇3应助鹂鹂复霖霖采纳,获得10
14秒前
15秒前
16秒前
潇洒一曲发布了新的文献求助10
16秒前
山真页完成签到,获得积分10
16秒前
ting完成签到,获得积分10
17秒前
Wone3完成签到 ,获得积分10
17秒前
丛玉林完成签到,获得积分10
20秒前
山真页发布了新的文献求助10
22秒前
叶水清完成签到,获得积分10
22秒前
23秒前
boshi发布了新的文献求助10
24秒前
24秒前
25秒前
Yang完成签到,获得积分20
27秒前
Doctor.Xie完成签到,获得积分10
27秒前
29秒前
Owen应助宏hong采纳,获得10
29秒前
凡夕木叶发布了新的文献求助10
29秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829872
求助须知:如何正确求助?哪些是违规求助? 3372453
关于积分的说明 10472306
捐赠科研通 3091969
什么是DOI,文献DOI怎么找? 1701615
邀请新用户注册赠送积分活动 818527
科研通“疑难数据库(出版商)”最低求助积分说明 770942