Energy-Efficient and QoS-Aware Data Transfer in Q-Learning-Based Small-World LPWANs

计算机科学 计算机网络 服务质量 学习迁移 人工智能
作者
Naga Srinivasarao Chilamkurthy,Niteesh Karna,Vamsidhar Vuddagiri,S. Tiwari,Anirban Ghosh,Linga Reddy Cenkeramaddi,Om Jee Pandey
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 22636-22649 被引量:5
标识
DOI:10.1109/jiot.2023.3304337
摘要

The widespread use of the Internet of Things (IoT) necessitates large-scale communication among smart IoT devices (IoDs) across a wide geographical area. However, due to the limited radio range and scalability issues of traditional wireless sensor networks, wide-area communication among IoDs is not feasible. As a solution, a low-power wide-area network (LPWAN) is emerging as one of the techniques that can provide long-range communication with minimal power consumption. Nevertheless, the direct data transmission approach will no longer be viable due to its short network lifetime. As such, multihop data routing strategies for LPWANs are proposed in the literature. However, multihop data transmission has several challenges, including increased data latency, energy imbalance, poor bandwidth utilization, and low data throughput. To address these challenges, we propose a novel method that uses the machine learning technique for an energy-efficient and Quality-of-Service (QoS)-aware data transfer based on a recent breakthrough in social networks known as small-world characteristics (SWC). The network having SWC (i.e., low average path length and high average clustering coefficient) uses long-range links to reduce the number of intermediate hops for data transmission. In particular, a $Q$ -learning framework is utilized for introducing optimal long-range links between the selected IoDs, resulting in the development of a small-world LPWAN (SW-LPWAN). Furthermore, the performance of the proposed method is computed in terms of energy efficiency and QoS. Moreover, the results are compared with existing data routing techniques, such as low-energy adaptive clustering hierarchy (LEACH), modified LEACH, conventional multihop, and direct data transmission. Specifically, the proposed method maintains 29% more alive nodes, 18% higher residual energy, and 22% higher data throughput compared to the second-best-performing method. As such, the obtained experimental results validate that the proposed method outperforms other existing methods in the context of energy consumption and QoS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助yu采纳,获得10
2秒前
小学生的练习簿完成签到,获得积分0
2秒前
小嘉饼饼完成签到,获得积分20
2秒前
3秒前
KM完成签到,获得积分10
3秒前
linhuafeng完成签到 ,获得积分10
3秒前
liushuo发布了新的文献求助10
4秒前
天天快乐应助jianrobsim采纳,获得30
4秒前
科研通AI6应助BIGDEEK采纳,获得10
5秒前
美好向日葵完成签到,获得积分10
5秒前
6秒前
勤劳的冰淇淋完成签到 ,获得积分10
6秒前
wx2360ouc完成签到 ,获得积分10
7秒前
Joshua完成签到,获得积分10
7秒前
英姑应助狂野世立采纳,获得10
12秒前
zmy发布了新的文献求助10
12秒前
turbohero完成签到,获得积分10
13秒前
14秒前
15秒前
年轻的迎南完成签到,获得积分10
16秒前
QiJiLuLu完成签到,获得积分10
16秒前
上官若男应助moino采纳,获得10
17秒前
hh完成签到 ,获得积分10
17秒前
光亮念文发布了新的文献求助10
18秒前
yifanchen发布了新的文献求助10
18秒前
19秒前
djf完成签到,获得积分10
19秒前
20秒前
21秒前
龚昊完成签到,获得积分20
22秒前
23秒前
23秒前
jianrobsim完成签到,获得积分10
25秒前
吹梦西洲完成签到,获得积分10
25秒前
26秒前
27秒前
踏实谷蓝给踏实谷蓝的求助进行了留言
27秒前
jianrobsim发布了新的文献求助30
28秒前
内向的小凡完成签到,获得积分0
28秒前
啦某某发布了新的文献求助60
28秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5389389
求助须知:如何正确求助?哪些是违规求助? 4511620
关于积分的说明 14039110
捐赠科研通 4422490
什么是DOI,文献DOI怎么找? 2429362
邀请新用户注册赠送积分活动 1421902
关于科研通互助平台的介绍 1401035