Computational Model Predicts Patient Outcomes in Luminal B Breast Cancer Treated with Endocrine Therapy and CDK4/6 Inhibition

乳腺癌 内分泌系统 肿瘤科 医学 内科学 癌症 激素
作者
Leonard Schmiester,Fara Brasó‐Maristany,Blanca González‐Farré,Tomás Pascual,Joaquín Gavilá,Xavier Tekpli,Jürgen Geisler,Vessela N. Kristensen,Arnoldo Frigessi,Aleix Prat,Alvaro Köhn‐Luque
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:30 (17): 3779-3787 被引量:3
标识
DOI:10.1158/1078-0432.ccr-24-0244
摘要

Abstract Purpose: Development of a computational biomarker to predict, prior to treatment, the response to CDK4/6 inhibition (CDK4/6i) in combination with endocrine therapy in patients with breast cancer. Experimental Design: A mechanistic mathematical model that accounts for protein signaling and drug mechanisms of action was developed and trained on extensive, publicly available data from breast cancer cell lines. The model was built to provide a patient-specific response score based on the expression of six genes (CCND1, CCNE1, ESR1, RB1, MYC, and CDKN1A). The model was validated in five independent cohorts of 148 patients in total with early-stage or advanced breast cancer treated with endocrine therapy and CDK4/6i. Response was measured either by evaluating Ki67 levels and PAM50 risk of relapse (ROR) after neoadjuvant treatment or by evaluating progression-free survival (PFS). Results: The model showed significant association with patient’s outcomes in all five cohorts. The model predicted high Ki67 [area under the curve; AUC (95% confidence interval, CI) of 0.80 (0.64–0.92), 0.81 (0.60–1.00) and 0.80 (0.65–0.93)] and high PAM50 ROR [AUC of 0.78 (0.64–0.89)]. This observation was not obtained in patients treated with chemotherapy. In the other cohorts, patient stratification based on the model prediction was significantly associated with PFS [hazard ratio (HR) = 2.92 (95% CI, 1.08–7.86), P = 0.034 and HR = 2.16 (1.02 4.55), P = 0.043]. Conclusions: A mathematical modeling approach accurately predicts patient outcome following CDK4/6i plus endocrine therapy that marks a step toward more personalized treatments in patients with Luminal B breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
小杜发布了新的文献求助30
2秒前
4秒前
aaa完成签到 ,获得积分10
4秒前
5秒前
y741应助李迎硕采纳,获得20
5秒前
Criminology34应助清爽指甲油采纳,获得10
5秒前
zzzzz完成签到,获得积分10
5秒前
蓝色记忆完成签到,获得积分10
6秒前
6秒前
地理汪汪发布了新的文献求助10
7秒前
zhengzehong完成签到,获得积分10
8秒前
zzzzz发布了新的文献求助10
8秒前
阿尔法贝塔完成签到 ,获得积分10
9秒前
平淡的问儿完成签到,获得积分10
9秒前
lxy发布了新的文献求助10
10秒前
11秒前
12秒前
小羊完成签到 ,获得积分10
12秒前
12秒前
小杜完成签到,获得积分20
12秒前
peri发布了新的文献求助10
15秒前
wuhao完成签到,获得积分10
15秒前
15秒前
Will发布了新的文献求助10
15秒前
希望天下0贩的0应助Snoopy采纳,获得10
17秒前
Orange应助青青草采纳,获得10
18秒前
豌豆完成签到 ,获得积分10
18秒前
Akim应助正直天佑采纳,获得10
20秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
21秒前
小二郎应助一二三采纳,获得10
22秒前
榕俊完成签到,获得积分10
22秒前
山野的雾完成签到 ,获得积分10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
黔北胡歌发布了新的文献求助10
22秒前
iNk应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685896
关于积分的说明 14840412
捐赠科研通 4675610
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144