Deep learning techniques for enhanced sea-ice types classification in the Beaufort Sea via SAR imagery

波弗特海 遥感 海冰 地质学 合成孔径雷达 海洋学
作者
Yan Huang,Yibin Ren,Xiaofeng Li
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:308: 114204-114204 被引量:25
标识
DOI:10.1016/j.rse.2024.114204
摘要

This study proposes a dual-branch encoder U-Net (DBU-Net) deep learning model to classify sea ice types based on synthetic aperture radar (SAR) images in the Beaufort Sea. The DBU-Net can segment multi-year ice (MYI), first-year ice (FYI), open water (OW), and leads on SAR images. We design a dual-branch encoder to fuse the polarization and the grey-level co-occurrence matrix (GLCM) information of SAR images to improve the model's classification capability. The model is subsequently fine-tuned using lead samples to identify leads. 24 Sentinel-1 SAR images acquired in the Beaufort Sea are utilized for model training and testing. The accuracy (Acc), mean intersection over union (mIoU), and kappa coefficient (Kappa) are employed as evaluation metrics. Experiments show that DBU-Net achieves 91.83%/0.841/0.849 in Acc/mIoU/Kappa in classifying MYI, FYI, and OW, significantly outperforming three traditional models based on support vector machine, random forest, or convolutional neural network. Compared with the original U-Net, the dual-branch encoder and the GLCMs improve 1.45%/4.4%/2.8% in Acc/mIoU/Kappa in MYI, FYI, and OW. Acc/mIoU/Kappa metrics of leads detection is 99.49%/0.801/0.754. Besides, 454 Sentinel-1 SAR images are fed into the optimal DBU-Net to generate 80 m sea ice products in the Beaufort Sea for winters 2018–2022. As the MYI draws wide attention and the FYI and MYI are complementary in the area during the Winter, we discuss the variation of MYI based on the generated sea ice products and explore the relationship between MYI's variation and the Beaufort High. We found that the MYI export in the 2018/19 winter was due to large summer sea ice remains and the abnormal sea ice motion caused by the southeast shifting Beaufort Atmospheric Pressure High (Beaufort High). The MYI import in the 2020/21 winter was due to a strong northward MYI import caused by the powerful Beaufort High.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5433发布了新的文献求助10
2秒前
xiaohei发布了新的文献求助10
3秒前
Mic应助傻子采纳,获得10
3秒前
FashionBoy应助hh采纳,获得10
3秒前
万里海天完成签到,获得积分10
5秒前
尹不愁完成签到,获得积分10
6秒前
6秒前
无心的亦绿完成签到,获得积分10
8秒前
zhoukexiao完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
搜集达人应助多多采纳,获得10
9秒前
SciGPT应助FQma123采纳,获得10
9秒前
居居完成签到,获得积分10
9秒前
苗玉完成签到,获得积分10
10秒前
10秒前
BINGBING1230发布了新的文献求助10
11秒前
5433完成签到,获得积分10
12秒前
passion发布了新的文献求助10
12秒前
Da完成签到,获得积分10
13秒前
13秒前
djj完成签到,获得积分20
14秒前
felix完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
优雅的怀莲完成签到,获得积分10
16秒前
CodeCraft应助神勇玉米采纳,获得10
16秒前
djj发布了新的文献求助10
17秒前
LanceHayward完成签到 ,获得积分10
18秒前
hh发布了新的文献求助10
18秒前
19秒前
21秒前
21秒前
passion完成签到,获得积分10
22秒前
斯文败类应助无奈的语雪采纳,获得10
23秒前
满意的访梦完成签到,获得积分10
24秒前
FQma123发布了新的文献求助10
24秒前
26秒前
爱学习的小羊完成签到,获得积分10
26秒前
青年才俊发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606054
求助须知:如何正确求助?哪些是违规求助? 4690546
关于积分的说明 14864352
捐赠科研通 4703667
什么是DOI,文献DOI怎么找? 2542427
邀请新用户注册赠送积分活动 1507966
关于科研通互助平台的介绍 1472179