hdWGCNA and Cellular Communication Identify Active NK CellSubtypes in Alzheimer's Disease and Screen for Diagnostic Markersthrough Machine Learning

疾病 计算生物学 免疫系统 逻辑回归 基因 背景(考古学) 生物 机器学习 生物信息学 医学 计算机科学 免疫学 病理 遗传学 古生物学
作者
Guobin Song,Haoyang Wu,Haiqing Chen,Shengke Zhang,Qingwen Hu,Haotian Lai,Claire Fuller,Guanhu Yang,Hao Chi,Hao Chi
出处
期刊:Current Alzheimer Research [Bentham Science]
卷期号:21 (2): 120-140 被引量:3
标识
DOI:10.2174/0115672050314171240527064514
摘要

Background: Alzheimer's disease (AD) is a recognized complex and severe neurodegenerative disorder, presenting a significant challenge to global health. Its hallmark pathological features include the deposition of β-amyloid plaques and the formation of neurofibrillary tangles. Given this context, it becomes imperative to develop an early and accurate biomarker model for AD diagnosis, employing machine learning and bioinformatics analysis. Methods: In this study, single-cell data analysis was employed to identify cellular subtypes that exhibited significant differences between the diseased and control groups. Following the identification of NK cells, hdWGCNA analysis and cellular communication analysis were conducted to pinpoint NK cell subset with the most robust communication effects. Subsequently, three machine learning algorithms-LASSO, Random Forest, and SVM-RFE-were employed to jointly screen for NK cell subset modular genes highly associated with AD. A logistic regression diagnostic model was then designed based on these characterized genes. Additionally, a protein-protein interaction (PPI) networks of model genes was established. Furthermore, unsupervised cluster analysis was conducted to classify AD subtypes based on the model genes, followed by the analysis of immune infiltration in the different subtypes. Finally, Spearman correlation coefficient analysis was utilized to explore the correlation between model genes and immune cells, as well as inflammatory factors. Results: We have successfully identified three genes (RPLP2, RPSA, and RPL18A) that exhibit a high association with AD. The nomogram based on these genes provides practical assistance in diagnosing and predicting patients' outcomes. The interconnected genes screened through PPI are intricately linked to ribosome metabolism and the COVID-19 pathway. Utilizing the expression of modular genes, unsupervised cluster analysis unveiled three distinct AD subtypes. Particularly noteworthy is subtype C3, characterized by high expression, which correlates with immune cell infiltration and elevated levels of inflammatory factors. Hence, it can be inferred that the establishment of an immune environment in AD patients is closely intertwined with the heightened expression of model genes. Conclusion: This study has not only established a valuable diagnostic model for AD patients but has also delved deeply into the pivotal role of model genes in shaping the immune environment of individuals with AD. These findings offer crucial insights into early AD diagnosis and patient management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱洪帆发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
Ha完成签到,获得积分10
5秒前
幸福妙柏完成签到 ,获得积分10
5秒前
xiuxiu125完成签到,获得积分10
6秒前
侠医2012完成签到,获得积分0
6秒前
Jzhaoc580完成签到 ,获得积分10
6秒前
会写日记的乌龟先生完成签到,获得积分10
8秒前
10秒前
神勇寒天完成签到 ,获得积分10
13秒前
zhang完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
lemon完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
123456完成签到 ,获得积分10
16秒前
五月完成签到 ,获得积分10
17秒前
luckweb完成签到,获得积分10
18秒前
左鞅完成签到 ,获得积分10
18秒前
luckweb发布了新的文献求助10
20秒前
飛03完成签到 ,获得积分10
22秒前
hy1234完成签到 ,获得积分10
28秒前
饱满烙完成签到 ,获得积分10
31秒前
疯狂的凡梦完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
35秒前
marc107完成签到,获得积分10
39秒前
风清扬应助科研通管家采纳,获得10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
量子星尘发布了新的文献求助10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
CodeCraft应助科研通管家采纳,获得10
40秒前
滕祥应助科研通管家采纳,获得10
40秒前
共享精神应助科研通管家采纳,获得10
40秒前
40秒前
tulips完成签到 ,获得积分10
41秒前
BINBIN完成签到 ,获得积分0
43秒前
federish完成签到 ,获得积分10
44秒前
哗哗华完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
48秒前
十八完成签到 ,获得积分10
52秒前
所所应助Kair采纳,获得10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706836
求助须知:如何正确求助?哪些是违规求助? 5179219
关于积分的说明 15247555
捐赠科研通 4860347
什么是DOI,文献DOI怎么找? 2608522
邀请新用户注册赠送积分活动 1559382
关于科研通互助平台的介绍 1517226