亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Understanding the research trend and evolution in radiogenomics (2005-2023): A bibliometric analysis (Preprint)

预印本 放射基因组学 计算机科学 人工智能 无线电技术 万维网
作者
Meng Wang,Yun Peng,Ya Wang,Dehong Luo
出处
期刊:Interactive journal of medical research [JMIR Publications]
卷期号:13: e51347-e51347
标识
DOI:10.2196/51347
摘要

Background Radiogenomics is an emerging technology that integrates genomics and medical image–based radiomics, which is considered a promising approach toward achieving precision medicine. Objective The aim of this study was to quantitatively analyze the research status, dynamic trends, and evolutionary trajectory in the radiogenomics field using bibliometric methods. Methods The relevant literature published up to 2023 was retrieved from the Web of Science Core Collection. Excel was used to analyze the annual publication trend. VOSviewer was used for constructing the keywords co-occurrence network and the collaboration networks among countries and institutions. CiteSpace was used for citation keywords burst analysis and visualizing the references timeline. Results A total of 3237 papers were included and exported in plain-text format. The annual number of publications showed an increasing annual trend. China and the United States have published the most papers in this field, with the highest number of citations in the United States and the highest average number per item in the Netherlands. Keywords burst analysis revealed that several keywords, including “big data,” “magnetic resonance spectroscopy,” “renal cell carcinoma,” “stage,” and “temozolomide,” experienced a citation burst in recent years. The timeline views demonstrated that the references can be categorized into 8 clusters: lower-grade glioma, lung cancer histology, lung adenocarcinoma, breast cancer, radiation-induced lung injury, epidermal growth factor receptor mutation, late radiotherapy toxicity, and artificial intelligence. Conclusions The field of radiogenomics is attracting increasing attention from researchers worldwide, with the United States and the Netherlands being the most influential countries. Exploration of artificial intelligence methods based on big data to predict the response of tumors to various treatment methods represents a hot spot research topic in this field at present.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助矮小的猎豹采纳,获得10
8秒前
14秒前
16秒前
gt完成签到 ,获得积分10
18秒前
19秒前
呜呼啦呼完成签到 ,获得积分10
21秒前
22秒前
SciGPT应助Felix采纳,获得10
25秒前
斯文败类应助矮小的猎豹采纳,获得10
28秒前
28秒前
豆子完成签到 ,获得积分10
31秒前
32秒前
嘉心糖完成签到,获得积分0
35秒前
吃了吃了完成签到,获得积分10
37秒前
37秒前
38秒前
量子星尘发布了新的文献求助10
40秒前
42秒前
leinei发布了新的文献求助10
43秒前
科研通AI2S应助Eq采纳,获得10
50秒前
53秒前
honphyjiang发布了新的文献求助10
1分钟前
1分钟前
CRUSADER完成签到,获得积分10
1分钟前
leinei完成签到,获得积分10
1分钟前
honphyjiang完成签到,获得积分10
1分钟前
饱满含玉完成签到,获得积分10
1分钟前
1分钟前
mayhem发布了新的文献求助100
1分钟前
dagangwood应助gatts采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
青鸟应助科研通管家采纳,获得10
1分钟前
zm发布了新的文献求助10
1分钟前
zm完成签到,获得积分10
1分钟前
Hiraeth完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4316337
求助须知:如何正确求助?哪些是违规求助? 3834811
关于积分的说明 11994725
捐赠科研通 3475180
什么是DOI,文献DOI怎么找? 1906068
邀请新用户注册赠送积分活动 952289
科研通“疑难数据库(出版商)”最低求助积分说明 853789