Advancing EGFR mutation subtypes prediction in NSCLC by combining 3D pretrained ConvNeXt, radiomics, and clinical features

无线电技术 卷积神经网络 人工智能 深度学习 计算机科学 特征选择 医学 模式识别(心理学) 机器学习
作者
Hao Peng,Yinghong Yu,Chan-Tao Huang,Fang Zhou,Yikai Xu,Jiancheng Yang,Jun Xu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1464555
摘要

Purpose The aim of this study was to develop a novel approach for predicting the expression status of Epidermal Growth Factor Receptor (EGFR) and its subtypes in patients with Non-Small Cell Lung Cancer (NSCLC) using a Three-Dimensional Convolutional Neural Network (3D-CNN) ConvNeXt, radiomics features and clinical features. Materials and methods A total of 732 NSCLC patients with available CT imaging and EGFR expression data were included in this retrospective study. The region of interest (ROI) was manually segmented, and clinicopathological features were collected. Radiomic and deep learning features were extracted. The instances were randomly divided into training, validation, and test sets. Feature selection was performed, and XGBoost was used to create solo models and combined models to predict the presence of EGFR and subtypes mutations. The effectiveness of the models was assessed using ROC and PRC curves. Results We established the following models: Model CNN , Model radiomic , Model clinical , Model CNN+radiomic , Model CNN+clinical , Model radiomic+clinical , and Model CNN+radiomic+clinical , which were based on deep learning features, radiomic features, clinical data and combinations of these, respectively. In predicting EGFR mutations, Model CNN+radiomic+clinical demonstrated superior performance compared to other prediction models, achieving an AUC of 0.801. For distinguishing between EGFR subtypes ex19del and L858R, Model CNN+radiomic reached the highest AUC value of 0.775. Conclusions Both deep learning models and radiomic signature-based models offer reasonably accurate non-invasive predictions of EGFR status and its subtypes. Fusion models hold the potential to enhance noninvasive methods for predicting EGFR mutations and subtypes, presenting a more reliable prediction approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助野性的曼香采纳,获得10
刚刚
bruce发布了新的文献求助10
1秒前
zhuazhua完成签到 ,获得积分10
2秒前
3秒前
3秒前
不知所措的咪完成签到,获得积分10
3秒前
醋溜滑板完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
焦糖完成签到,获得积分10
4秒前
Dongjie发布了新的文献求助10
4秒前
打工牛牛完成签到,获得积分10
4秒前
6秒前
joxes发布了新的文献求助10
6秒前
CHEE完成签到 ,获得积分10
7秒前
qiang发布了新的文献求助10
7秒前
李理完成签到,获得积分20
7秒前
六水居士发布了新的文献求助10
8秒前
ex_ritian完成签到,获得积分10
9秒前
xiaoxi发布了新的文献求助10
9秒前
夕诙应助jun采纳,获得20
9秒前
9秒前
王大帅哥完成签到,获得积分10
9秒前
a1423072381发布了新的文献求助10
10秒前
金色闪光发布了新的文献求助30
10秒前
Shiny完成签到,获得积分10
10秒前
李健的粉丝团团长应助zzz采纳,获得10
10秒前
权翼发布了新的文献求助10
10秒前
火星上眼睛完成签到,获得积分10
11秒前
李热热发布了新的文献求助10
11秒前
tombo100发布了新的文献求助200
11秒前
董咚咚完成签到,获得积分10
11秒前
Owen应助zw采纳,获得10
12秒前
12秒前
糯米香香完成签到,获得积分10
12秒前
请和我吃饭完成签到,获得积分10
13秒前
可爱的函函应助六水居士采纳,获得10
13秒前
简因完成签到 ,获得积分10
14秒前
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095638
求助须知:如何正确求助?哪些是违规求助? 3633697
关于积分的说明 11518153
捐赠科研通 3344425
什么是DOI,文献DOI怎么找? 1838100
邀请新用户注册赠送积分活动 905666
科研通“疑难数据库(出版商)”最低求助积分说明 823223