Survival outcome prediction of esophageal squamous cell carcinoma patients based on radiomics and mutation signature

医学 无线电技术 食管鳞状细胞癌 肿瘤科 内科学 食管癌 基底细胞 突变 结果(博弈论) 病理 放射科 癌症 基因 遗传学 数理经济学 生物 数学
作者
Ting Yan,Zhenpeng Yan,Guohui Chen,Songrui Xu,Chenxuan Wu,Qichao Zhou,Guolan Wang,Ying Li,Min Jia,Xiaofei Zhuang,Jie Yang,Lili Liu,Lu Wang,Qinglu Wu,Bin Wang,Tianyi Yan
出处
期刊:Cancer Imaging [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s40644-024-00821-5
摘要

The present study aimed to develop a nomogram model for predicting overall survival (OS) in esophageal squamous cell carcinoma (ESCC) patients. A total of 205 patients with ESCC were enrolled and randomly divided into a training cohort (n = 153) and a test cohort (n = 52) at a ratio of 7:3. Multivariate Cox regression was used to construct the radiomics model based on CT data. The mutation signature was constructed based on whole genome sequencing data and found to be significantly associated with the prognosis of patients with ESCC. A nomogram model combining the Rad-score and mutation signature was constructed. An integrated nomogram model combining the Rad-score, mutation signature, and clinical factors was constructed. A total of 8 CT features were selected for multivariate Cox regression analysis to determine whether the Rad-score was significantly correlated with OS. The area under the curve (AUC) of the radiomics model was 0.834 (95% CI, 0.767-0.900) for the training cohort and 0.733 (95% CI, 0.574-0.892) for the test cohort. The Rad-score, S3, and S6 were used to construct an integrated RM nomogram. The predictive performance of the RM nomogram model was better than that of the radiomics model, with an AUC of 0. 830 (95% CI, 0.761-0.899) in the training cohort and 0.793 (95% CI, 0.653-0.934) in the test cohort. The Rad-score, TNM stage, lymph node metastasis status, S3, and S6 were used to construct an integrated RMC nomogram. The predictive performance of the RMC nomogram model was better than that of the radiomics model and RM nomogram model, with an AUC of 0. 862 (95% CI, 0.795-0.928) in the training cohort and 0. 837 (95% CI, 0.705-0.969) in the test cohort. An integrated nomogram model combining the Rad-score, mutation signature, and clinical factors can better predict the prognosis of patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信的冬日完成签到,获得积分10
刚刚
刚刚
happiness发布了新的文献求助10
1秒前
1秒前
昏睡的蟠桃应助林樾采纳,获得50
2秒前
种花兔完成签到,获得积分20
4秒前
胜胜糖完成签到 ,获得积分10
5秒前
搜集达人应助QP34采纳,获得10
5秒前
amanda完成签到 ,获得积分20
6秒前
科研通AI5应助后手歪歪采纳,获得10
6秒前
Nikii发布了新的文献求助10
7秒前
爱静静应助yx采纳,获得10
8秒前
呜呜呜呜呜呜呜呜完成签到,获得积分10
8秒前
9秒前
ANT完成签到 ,获得积分10
10秒前
呆萌的太阳完成签到 ,获得积分10
10秒前
危机的安容完成签到,获得积分10
11秒前
慕若涵冰完成签到,获得积分10
11秒前
123完成签到,获得积分10
12秒前
科研通AI5应助17采纳,获得10
12秒前
susu发布了新的文献求助10
15秒前
15秒前
Wonder发布了新的文献求助10
20秒前
20秒前
谢雷XIELei应助一个小胖子采纳,获得10
22秒前
moony完成签到 ,获得积分10
22秒前
富强民主完成签到,获得积分10
24秒前
充电宝应助Luna采纳,获得10
24秒前
star发布了新的文献求助10
24秒前
Hao发布了新的文献求助10
25秒前
25秒前
luo发布了新的文献求助10
26秒前
专注的孤风完成签到,获得积分10
26秒前
27秒前
严剑封完成签到,获得积分10
27秒前
虎虎虎完成签到,获得积分10
27秒前
28秒前
28秒前
公主请上班完成签到,获得积分10
29秒前
嗨Honey完成签到 ,获得积分10
29秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729