High-Density Electroencephalography and Speech Signal Based Deep Framework for Clinical Depression Diagnosis

脑电图 萧条(经济学) 召回 心情 光谱图 苦恼 听力学 心理学 精神科 医学 计算机科学 人工智能 临床心理学 认知心理学 经济 宏观经济学
作者
Abdul Qayyum,Imran Razzak,M. Tanveer,Moona Mazher,Bandar Alhaqbani
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 2587-2597 被引量:24
标识
DOI:10.1109/tcbb.2023.3257175
摘要

Depression is a mental disorder characterized by persistent depressed mood or loss of interest in performing activities, causing significant impairment in daily routine. Possible causes include psychological, biological, and social sources of distress. Clinical depression is the more-severe form of depression, also known as major depression or major depressive disorder. Recently, electroencephalography and speech signals have been used for early diagnosis of depression; however, they focus on moderate or severe depression. We have combined audio spectrogram and multiple frequencies of EEG signals to improve diagnostic performance. To do so, we have fused different levels of speech and EEG features to generate descriptive features and applied vision transformers and various pre-trained networks on the speech and EEG spectrum. We have conducted extensive experiments on Multimodal Open Dataset for Mental-disorder Analysis (MODMA) dataset, which showed significant improvement in performance in depression diagnosis (0.972, 0.973 and 0.973 precision, recall and F1 score respectively) for patients at the mild stage. Besides, we provided a web-based framework using Flask and provided the source code publicly.1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助嚣张的小张采纳,获得10
刚刚
汉堡包应助JerryZ采纳,获得10
1秒前
Lucas应助Hsu采纳,获得10
2秒前
bkagyin应助xlk2222采纳,获得10
3秒前
3秒前
4秒前
PSQ发布了新的文献求助10
5秒前
6秒前
tannie发布了新的文献求助10
6秒前
shinn发布了新的文献求助10
6秒前
8秒前
scq发布了新的文献求助10
8秒前
wb发布了新的文献求助10
9秒前
羊觅夏完成签到,获得积分10
9秒前
^o^关闭了^o^文献求助
9秒前
读书酱完成签到 ,获得积分10
10秒前
昕昕233发布了新的文献求助10
11秒前
quanjiazhi发布了新的文献求助10
11秒前
12秒前
12秒前
yhr发布了新的文献求助10
12秒前
白夜发布了新的文献求助30
13秒前
上官若男应助zb采纳,获得10
13秒前
1111发布了新的文献求助10
14秒前
研友_59AB85发布了新的文献求助10
14秒前
shinn发布了新的文献求助10
15秒前
王小西完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
18秒前
19秒前
啊呜完成签到,获得积分20
19秒前
开心易真发布了新的文献求助10
19秒前
小二郎应助scq采纳,获得10
22秒前
英俊的铭应助lq102021采纳,获得200
22秒前
wb完成签到,获得积分20
22秒前
lizhiqian2024发布了新的文献求助10
22秒前
23秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122312
求助须知:如何正确求助?哪些是违规求助? 3660219
关于积分的说明 11586068
捐赠科研通 3361513
什么是DOI,文献DOI怎么找? 1847080
邀请新用户注册赠送积分活动 911647
科研通“疑难数据库(出版商)”最低求助积分说明 827517