Leveraging diverse cell-death patterns in diagnosis of sepsis by integrating bioinformatics and machine learning

计算机科学 生物信息学 败血症 数据科学 计算生物学 人工智能 机器学习 医学 生物 免疫学
作者
Mi Liu,Xingxing Gao,Hongfa Wang,Yiping Zhang,Xiaojun Li,Renlai Zhu,Yunru Sheng
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:13: e19077-e19077
标识
DOI:10.7717/peerj.19077
摘要

Background Sepsis is a life-threatening disease causing millions of deaths every year. It has been reported that programmed cell death (PCD) plays a critical role in the development and progression of sepsis, which has the potential to be a diagnosis and prognosis indicator for patient with sepsis. Methods Fourteen PCD patterns were analyzed for model construction. Seven transcriptome datasets and a single cell sequencing dataset were collected from the Gene Expression Omnibus database. Results A total of 289 PCD-related differentially expressed genes were identified between sepsis patients and healthy individuals. The machine learning algorithm screened three PCD-related genes, NLRC4, TXN and S100A9, as potential biomarkers for sepsis. The area under curve of the diagnostic model reached 100.0% in the training set and 100.0%, 99.9%, 98.9%, 99.5% and 98.6% in five validation sets. Furthermore, we verified the diagnostic genes in sepsis patients from our center via qPCR experiment. Single cell sequencing analysis revealed that NLRC4, TXN and S100A9 were mainly expressed on myeloid/monocytes and dendritic cells. Immune infiltration analysis revealed that multiple immune cells involved in the development of sepsis. Correlation and gene set enrichment analysis (GSEA) analysis revealed that the three biomarkers were significantly associated with immune cells infiltration. Conclusions We developed and validated a diagnostic model for sepsis based on three PCD-related genes. Our study might provide potential peripheral blood diagnostic candidate biomarkers for patients with sepsis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
c1302128340完成签到,获得积分10
1秒前
March完成签到,获得积分10
4秒前
weng完成签到,获得积分10
5秒前
flying完成签到 ,获得积分10
6秒前
Asumita完成签到,获得积分10
8秒前
Sleven完成签到,获得积分10
8秒前
小心翼翼发布了新的文献求助30
8秒前
8秒前
sweet完成签到 ,获得积分10
8秒前
青黛完成签到 ,获得积分10
10秒前
LYZSh发布了新的文献求助10
12秒前
波波波波波6764完成签到 ,获得积分10
13秒前
爱听歌契完成签到 ,获得积分10
14秒前
彭于晏应助YANBINGHANG采纳,获得10
15秒前
仙女完成签到 ,获得积分10
17秒前
小蘑菇应助LYZSh采纳,获得10
21秒前
leotao完成签到,获得积分10
22秒前
xue完成签到 ,获得积分10
25秒前
Richard完成签到 ,获得积分10
28秒前
Lauren完成签到 ,获得积分10
30秒前
30秒前
海之恋心完成签到 ,获得积分10
31秒前
LS完成签到,获得积分10
32秒前
苗苗043完成签到 ,获得积分10
32秒前
Singhi完成签到,获得积分10
37秒前
姚世娇完成签到 ,获得积分10
39秒前
42秒前
Felicity完成签到 ,获得积分10
43秒前
zx完成签到 ,获得积分10
43秒前
祁灵枫完成签到,获得积分10
45秒前
清风完成签到 ,获得积分10
45秒前
fang完成签到,获得积分0
45秒前
科研小白发布了新的文献求助10
46秒前
美好灵寒完成签到 ,获得积分10
49秒前
四叶草完成签到 ,获得积分10
49秒前
笨笨千亦完成签到 ,获得积分10
49秒前
胡霖完成签到,获得积分10
51秒前
yinshan完成签到 ,获得积分10
53秒前
淡然的剑通完成签到 ,获得积分10
54秒前
sora完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079657
求助须知:如何正确求助?哪些是违规求助? 4297858
关于积分的说明 13388927
捐赠科研通 4121055
什么是DOI,文献DOI怎么找? 2257039
邀请新用户注册赠送积分活动 1261302
关于科研通互助平台的介绍 1195376